Holger Althues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithium‧ulfur Battery. Advanced Functional Materials, 2015, 25, 287-297.	14.9	315
2	Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. Journal of Power Sources, 2014, 268, 82-87.	7.8	139
3	High capacity micro-mesoporous carbon–sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. Journal of Materials Chemistry A, 2013, 1, 9225.	10.3	138
4	Enabling Highâ€Energy Solidâ€State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes. Advanced Energy Materials, 2020, 10, 2001320.	19.5	109
5	Intrinsic Shuttle Suppression in Lithium-Sulfur Batteries for Pouch Cell Application. Journal of the Electrochemical Society, 2017, 164, A3766-A3771.	2.9	101
6	A new route for the preparation of mesoporous carbon materials with high performance in lithium–sulphur battery cathodes. Chemical Communications, 2013, 49, 5832.	4.1	97
7	Nanocasting Hierarchical Carbide-Derived Carbons in Nanostructured Opal Assemblies for High-Performance Cathodes in Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 12130-12140.	14.6	79
8	High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability. Scientific Reports, 2016, 6, 27982.	3.3	69
9	On the mechanistic role of nitrogen-doped carbon cathodes in lithium-sulfur batteries with low electrolyte weight portion. Nano Energy, 2018, 54, 116-128.	16.0	67
10	High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum. Journal of Power Sources, 2013, 227, 218-228.	7.8	66
11	Recent Progress and Emerging Application Areas for Lithium–Sulfur Battery Technology. Energy Technology, 2021, 9, 2000694.	3.8	58
12	Polysulfide Shuttle Suppression by Electrolytes with Lowâ€Density for Highâ€Energy Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900625.	3.8	57
13	The Role of Balancing Nanostructured Silicon Anodes and NMC Cathodes in Lithium-Ion Full-Cells with High Volumetric Energy Density. Journal of the Electrochemical Society, 2020, 167, 020516.	2.9	46
14	Scalable production of nitrogen-doped carbons for multilayer lithium-sulfur battery cells. Carbon, 2020, 161, 190-197.	10.3	43
15	Importance of Capacity Balancing on The Electrochemical Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ (NCM811)/Silicon Full Cells. Journal of the Electrochemical Society, 2019, 166, A3265-A3271.	2.9	40
16	Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries. Journal of Power Sources, 2017, 351, 183-191.	7.8	38
17	Wet-chemical catalyst deposition for scalable synthesis of vertical aligned carbon nanotubes on metal substrates. Chemical Physics Letters, 2011, 511, 288-293.	2.6	37
18	Insights into the redistribution of sulfur species during cycling in lithium-sulfur batteries using physisorption methods. Nano Energy, 2017, 34, 437-441.	16.0	29

HOLGER ALTHUES

#	Article	IF	CITATIONS
19	Zinc-salt templating of hierarchical porous carbons for low electrolyte high energy lithium-sulfur batteries (LE-LiS). Carbon, 2016, 107, 705-710.	10.3	28
20	Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries. Journal of Power Sources, 2017, 362, 349-357.	7.8	22
21	Impact of Carbon Porosity on Sulfur Conversion in Liâ^'S Battery Cathodes in a Sparingly Polysulfide Solvating Electrolyte. Batteries and Supercaps, 2021, 4, 823-833.	4.7	22
22	Sulfur: an intermediate template for advanced silicon anode architectures. Journal of Materials Chemistry A, 2018, 6, 14787-14796.	10.3	21
23	Nanostructured Siâ^'C Composites As Highâ€Capacity Anode Material For Allâ€Solidâ€State Lithiumâ€Ion Batteries**. Batteries and Supercaps, 2021, 4, 1323-1334.	4.7	19
24	Symmetric Lithium Sulfide – Sulfur Cells: A Method to Study Degradation Mechanisms of Cathode, Separator and Electrolyte Concepts for Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A1084-A1091.	2.9	16
25	Operando Radiography and Multimodal Analysis of Lithium–Sulfur Pouch Cells—Electrolyte Dependent Morphology Evolution at the Cathode. Advanced Energy Materials, 2022, 12, .	19.5	13
26	Tailoring Commercially Available Raw Materials for Lithium–Sulfur Batteries with Superior Performance and Enhanced Shelf Life. Energy Technology, 2015, 3, 1007-1013.	3.8	10
27	Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents. Batteries and Supercaps, 2021, 4, 347-358.	4.7	10
28	The Importance of Swelling Effects on Cathode Density and Electrochemical Performance of Lithiumâ^'Sulfur Battery Cathodes Produced via Dry Processing. Energy Technology, 2022, 10, 2100721.	3.8	7
29	Influence of external stack pressure on the performance of Li-S pouch cell. JPhys Energy, 2022, 4, 014004.	5.3	5
30	Influence of Polysulfides on the Lithium Metal Anode and on Electrolyte Properties. ECS Meeting Abstracts, 2021, MA2021-02, 88-88.	0.0	0