Claudia Vicente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246595/publications.pdf

Version: 2024-02-01

471509 501196 37 852 17 28 citations h-index g-index papers 42 42 42 837 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Potential of Esteya spp. for the Biocontrol of the Pinewood Nematode, Bursaphelenchus xylophilus. Microorganisms, 2022, 10, 168.	3.6	15
2	The Root Lesion Nematode Effector Ppen10370 Is Essential for Parasitism of Pratylenchus penetrans. Molecular Plant-Microbe Interactions, 2021, 34, MPMI-09-20-0267.	2.6	0
3	Insights into the Role of Fungi in Pine Wilt Disease. Journal of Fungi (Basel, Switzerland), 2021, 7, 780.	3.5	19
4	Editorial: Protecting Our Crops - Approaches for Plant Parasitic Nematode Control. Frontiers in Plant Science, 2021, 12, 726057.	3.6	7
5	High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon, 2021, 7, e08142.	3.2	24
6	Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus xylophilus: A Review on Essential Oils and Their Volatiles. Plants, 2021, 10, 2614.	3.5	24
7	Essential Oils and Volatiles as Nematodicides against the Cyst Nematodes Globodera and HeteroderaÂ. Biology and Life Sciences Forum, 2021, 3, .	0.6	3
8	First Report of Pratylenchus penetrans (Nematoda: Pratylenchidae) Associated with Amaryllis (Hippeastrum × hybridum), in Portugal. Plant Disease, 2020, 104, 2740.	1.4	2
9	Potato Cyst Nematodes: Geographical Distribution, Phylogenetic Relationships and Integrated Pest Management Outcomes in Portugal. Frontiers in Plant Science, 2020, 11, 606178.	3.6	13
10	<i>Pseudomonas</i> associated with <i>Bursaphelenchus xylophilus,</i> its insect vector and the host tree: A role in pine wilt disease?. Forest Pathology, 2019, 49, e12564.	1.1	2
11	Nematicidal actions of the marigold exudate $\hat{l}\pm$ -terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biology Open, 2019, 8, .	1.2	22
12	Identification and characterization of the first pectin methylesterase gene discovered in the root lesion nematode Pratylenchus penetrans. PLoS ONE, 2019, 14, e0212540.	2.5	14
13	The role of bacteria in pine wilt disease: insights from microbiome analysis. FEMS Microbiology Ecology, 2018, 94, .	2.7	30
14	From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microbial Genomics, $2018, 4, .$	2.0	19
15	The composition of hindgut microbiota of <i>Periplaneta japonica</i> in the presence of thelastomatid parasitic nematodes. Nihon Senchu Gakkai Shi = Japanese Journal of Nematology, 2018, 48, 19-26.	0.3	2
16	Genome analysis of new Blattabacterium spp., obligatory endosymbionts of Periplaneta fuliginosa and P. japonica. PLoS ONE, 2018, 13, e0200512.	2.5	13
17	The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus. BMC Genomics, 2016, 17, 301.	2.8	18
18	Genetic diversity of Bursaphelenchus cocophilus in South America. Nematology, 2016, 18, 605-614.	0.6	6

#	Article	IF	CITATIONS
19	Morphological, molecular and developmental characterization of the thelastomatid nematode Thelastoma bulhoesi (de Magalhães, 1900) (Oxyuridomorpha: Thelastomatidae) parasite of Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae) in Japan. Acta Parasitologica, 2016, 61, 241-54.	1.1	9
20	Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster. Microbial Ecology, 2016, 72, 669-681.	2.8	22
21	Composition of the Cockroach Gut Microbiome in the Presence of Parasitic Nematodes. Microbes and Environments, 2016, 31, 314-320.	1.6	28
22	Bacterial community associated to the pine wilt disease insect vectors Monochamus galloprovincialis and Monochamus alternatus. Scientific Reports, 2016, 6, 23908.	3.3	36
23	Nonâ€specific transient mutualism between the plant parasitic nematode, <i>Bursaphelenchus xylophilus</i> , and the opportunistic bacterium <i>Serratia quinivorans</i> BXF1, a plantâ€growth promoting pine endophyte with antagonistic effects. Environmental Microbiology, 2016, 18, 5265-5276.	3.8	15
24	Broad environmental tolerance of native root-nodule bacteria of Biserrula pelecinus indicate potential for soil fertility restoration. Plant Ecology and Diversity, 2016, 9, 299-307.	2.4	2
25	Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress. PLoS ONE, 2015, 10, e0123839.	2.5	29
26	Bacterial role in pine wilt disease development – review and future perspectives. Environmental Microbiology Reports, 2015, 7, 51-63.	2.4	37
27	First report of the nematode Leidynema appendiculata from Periplaneta fuliginosa. Acta Parasitologica, 2014, 59, 219-28.	1.1	21
28	Characterization of bacterial communities associated with the pine sawyer beetle <i>Monochamus galloprovincialis</i> , the insect vector of the pinewood nematode <i>Bursaphelenchus xylophilus</i> FEMS Microbiology Letters, 2013, 347, n/a-n/a.	1.8	34
29	Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused by Bursaphelenchus xylophilus. BioControl, 2013, 58, 427-433.	2.0	55
30	Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus. BMC Microbiology, 2013, 13, 299.	3.3	36
31	Characterization of Bacteria Associated with Pinewood Nematode Bursaphelenchus xylophilus. PLoS ONE, 2012, 7, e46661.	2.5	55
32	Biological nitrogen fixation of Biserrula pelecinus L. under water deficit. Plant, Soil and Environment, 2012, 58, 360-366.	2.2	7
33	Pine Wilt Disease: a threat to European forestry. European Journal of Plant Pathology, 2012, 133, 89-99.	1.7	177
34	Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. Antonie Van Leeuwenhoek, 2011, 100, 477-481.	1.7	35
35	Biodiversity of Root-Nodule Bacteria Associated With the Leguminous Plant Biserrula pelecinus. Soil Science, 2009, 174, 424-429.	0.9	3
36	Molecular Characterization of Symbiotic Bacteria Associated with the Pasture Legume Ornithopus sp. Native to Portugal. Current Plant Science and Biotechnology in Agriculture, 0, , 377-378.	0.0	0

#	Article	IF	CITATIONS
37	Fungal Communities of the Pine Wilt Disease Complex: Studying the Interaction of Ophiostomatales With Bursaphelenchus xylophilus. Frontiers in Plant Science, 0, 13, .	3.6	5