Christopher G Weisener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246412/publications.pdf

Version: 2024-02-01

50 papers 1,364 citations

304602 22 h-index 35 g-index

51 all docs

51 docs citations

51 times ranked

1422 citing authors

#	Article	IF	CITATIONS
1	Investigating the microbial dynamics of microcystin-LR degradation in Lake Erie sand. Chemosphere, 2021, 272, 129873.	4.2	7
2	Identifying chemolithotrophic and pathogenic-related gene expression within suspended sediment flocs in freshwater environments: A metatranscriptomic assessment. Science of the Total Environment, 2021, , 150996.	3.9	3
3	Tracking functional bacterial biomarkers in response to a gradient of contaminant exposure within a river continuum. Water Research, 2020, 168, 115167.	5.3	19
4	Exploring bacterial pathogen community dynamics in freshwater beach sediments: A tale of two lakes. Environmental Microbiology, 2020, 22, 568-583.	1.8	13
5	Evidence for Microbial Community Effect on Sediment Equilibrium Phosphorus Concentration (EPCO). Bulletin of Environmental Contamination and Toxicology, 2020, 105, 736-741.	1.3	6
6	Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions. Bioresource Technology, 2020, 312, 123597.	4.8	84
7	â€~Nitrification kinetics and microbial community dynamics of attached biofilm in wastewater treatment'. Water Science and Technology, 2020, 81, 891-905.	1.2	8
8	Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Science of the Total Environment, 2019, 647, 1594-1603.	3.9	24
9	Microbial metatranscriptomic investigations across contaminant gradients of the Detroit River. Science of the Total Environment, 2019, 690, 121-131.	3.9	26
10	Biogeochemical Characterization of Metal Behavior from Novel Mussel Shell Bioreactor Sludge Residues. Geosciences (Switzerland), 2019, 9, 50.	1.0	1
11	Microbial metabolic strategies for overcoming low-oxygen in naturalized freshwater reservoirs surrounding the Athabasca Oil Sands: A proxy for End-Pit Lakes?. Science of the Total Environment, 2019, 665, 113-124.	3.9	10
12	Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: Opening the black box. Water Research, 2018, 136, 1-11.	5.3	30
13	Evaluating the microbial community and gene regulation involved in crystallization kinetics of ZnS formation in reduced environments. Geochimica Et Cosmochimica Acta, 2018, 220, 201-216.	1.6	14
14	Investigating the Microbial Degradation Potential in Oil Sands Fluid Fine Tailings Using Gamma Irradiation: A Metagenomic Perspective. Microbial Ecology, 2017, 74, 362-372.	1.4	10
15	Combined imaging and molecular techniques for evaluating microbial function and composition: A review. Surface and Interface Analysis, 2017, 49, 1416-1421.	0.8	1
16	Investigating sources and sinks of N2O expression from freshwater microbial communities in urban watershed sediments. Chemosphere, 2017, 188, 697-705.	4.2	26
17	The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds. Water Research, 2016, 100, 337-347.	5.3	11
18	Physicochemical gradients, diffusive flux, and sediment oxygen demand within oil sands tailings materials from Alberta, Canada. Applied Geochemistry, 2016, 75, 90-99.	1.4	7

#	Article	IF	Citations
19	Solid phase characterization and metal deportment in a mussel shell bioreactor for the treatment of AMD, Stockton Coal Mine, New Zealand. Applied Geochemistry, 2016, 67, 133-143.	1.4	11
20	Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings. Science of the Total Environment, 2016, 539, 114-124.	3.9	15
21	Formation of the Neoarchean Bad Vermilion Lake Anorthosite Complex and spatially associated granitic rocks at a convergent plate margin, Superior Province, Western Ontario, Canada. Gondwana Research, 2016, 33, 134-159.	3.0	19
22	Cu(II) removal by Anoxybacillus flavithermus–iron oxide composites during the addition of Fe(II)aq. Geochimica Et Cosmochimica Acta, 2016, 172, 139-158.	1.6	17
23	Cu(II) removal by E. coli –iron oxide composites during the addition and oxidation of Fe(II). Chemical Geology, 2015, 409, 136-148.	1.4	7
24	Investigating the Effects of Se Solid Phase Substitution in Jarosite Minerals Influenced by Bacterial Reductive Dissolution. Minerals (Basel, Switzerland), 2014, 4, 17-36.	0.8	5
25	Novel Molecular Tools to Assess Microbial Activity in Contaminated Environments. Soil Biology, 2014, , 17-35.	0.6	2
26	Selenate adsorption to composites of Escherichia coli and iron oxide during the addition, oxidation, and hydrolysis of Fe(II). Chemical Geology, 2014, 383, 180-193.	1.4	19
27	Understanding biogeochemical gradients of sulfur, iron and carbon in an oil sands tailings pond. Chemical Geology, 2014, 382, 44-53.	1.4	43
28	Bioreactor studies predict whole microbial population dynamics in oil sands tailings ponds. Applied Microbiology and Biotechnology, 2013, 97, 3215-3224.	1.7	30
29	Microcosm assessment of the biogeochemical development of sulfur and oxygen in oil sands fluid fine tailings. Applied Geochemistry, 2013, 37, 1-11.	1.4	27
30	Comment on "Predominance of Aqueous Tl(I) Species in the River System Downstream from the Abandoned Carnoules Mine (Southern France)― Environmental Science & Downstream from the 2473-2474.	4.6	1
31	Reductive Dissolution of Tl(I)–Jarosite by <i>Shewanella putrefaciens</i> : Providing New Insights into Tl Biogeochemistry. Environmental Science & Eamp; Technology, 2012, 46, 11086-11094.	4.6	10
32	Simultaneous Release of Fe and As during the Reductive Dissolution of Pb–As Jarosite by <i>Shewanella putrefaciens</i> CN32. Environmental Science & Environmental Science	4.6	35
33	The effect of Ca–Fe–As coatings on microbial leaching of metals in arsenic bearing mine waste. Journal of Geochemical Exploration, 2011, 110, 23-30.	1.5	11
34	Preferential oxidation of pyrite as a function of morphology and relict texture. New Zealand Journal of Geology, and Geophysics, 2010, 53, 167-176.	1.0	38
35	Microbial reduction of ferrous arsenate: Biogeochemical implications for arsenic mobilization. Applied Geochemistry, 2009, 24, 2332-2341.	1.4	33
36	Intracellular Precipitation of Pb by <i>Shewanella putrefaciens</i> CN32 during the Reductive Dissolution of Pb-Jarosite. Environmental Science & Envi	4.6	32

#	Article	IF	CITATIONS
37	Microbial Dissolution of Silver Jarosite: Examining Its Trace Metal Behaviour in Reduced Environments. Geomicrobiology Journal, 2008, 25, 415-424.	1.0	23
38	Bacterially enhanced dissolution of meta-autunite. American Mineralogist, 2008, 93, 1858-1864.	0.9	15
39	Reductive Dissolution of Trace Metals from Sediments. Geomicrobiology Journal, 2007, 24, 157-165.	1.0	26
40	Field Column Study Using Zerovalent Iron for Mercury Removal from Contaminated Groundwater. Environmental Science & Environmen	4.6	42
41	A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. International Journal of Mineral Processing, 2004, 74, 239-249.	2.6	72
42	Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Applied Geochemistry, 2004, 19, 1953-1974.	1.4	76
43	Kinetics and mechanisms of the leaching of low Fe sphalerite. Geochimica Et Cosmochimica Acta, 2003, 67, 823-830.	1.6	70
44	Cu(II) adsorption mechanism on pyrite: an XAFS and XPS study. Surface and Interface Analysis, 2000, 30, 454-458.	0.8	68
45	An investigation of the Cu (II) adsorption mechanism on pyrite by ARXPS and SIMS. Minerals Engineering, 2000, 13, 1329-1340.	1.8	71
46	Partitioning of platinum-group elements and Au in the Fe?Ni?Cu?S system: experiments on the fractional crystallization of sulfide melt. Contributions To Mineralogy and Petrology, 1993, 115, 36-44.	1.2	177
47	SIMS imaging studies of the corrosion of alloy 800 and alloy 600 surfaces under secondary side boiler conditions. Surface and Interface Analysis, 1992, 18, 601-603.	0.8	12
48	Analysis of Zrî—,Nb fuel channel surfaces for hydrogen and other elements using Secondary Ion Mass Spectrometry (SIMS). Journal of Nuclear Materials, 1991, 178, 80-92.	1.3	12
49	SIMS studies of hydrogen diffusion through oxides on ZrNb alloy. Surface and Interface Analysis, 1991, 17, 757-763.	0.8	27
50	Analysis of zirconium-niobium pressure tube surfaces for hydrogen using secondary ion mass spectrometry (SIMS). Surface and Interface Analysis, 1990, 15, 591-597.	0.8	16