
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews, 2019, 119, 7328-7443.	47.7	367
2	Sequential native peptide ligation strategies for total chemical protein synthesis. Chemical Society Reviews, 2012, 41, 7001.	38.1	192
3	Bis(2-sulfanylethyl)amino Native Peptide Ligation. Organic Letters, 2010, 12, 5238-5241.	4.6	180
4	A Oneâ€Pot Threeâ€Segment Ligation Strategy for Protein Chemical Synthesis. Angewandte Chemie - International Edition, 2012, 51, 209-213.	13.8	126
5	Matrix-Free Laser Desorption/Ionization Mass Spectrometry on Silicon Nanowire Arrays Prepared by Chemical Etching of Crystalline Silicon. Langmuir, 2010, 26, 1354-1361.	3.5	118
6	Fmoc Solid-Phase Synthesis of Peptide Thioesters Using an IntramolecularN,S-Acyl Shift. Organic Letters, 2005, 7, 2647-2650.	4.6	107
7	Peptideâ^'Protein Microarrays for the Simultaneous Detection of Pathogen Infections. Bioconjugate Chemistry, 2004, 15, 307-316.	3.6	88
8	Peptide Arrays for Highly Sensitive and Specific Antibody-Binding Fluorescence Assays. Bioconjugate Chemistry, 2002, 13, 713-720.	3.6	83
9	α-Oxo Aldehyde or Glyoxylyl Group Chemistry in Peptide Bioconjugation. Bioconjugate Chemistry, 2013, 24, 735-765.	3.6	80
10	Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanoscale, 2012, 4, 231-238.	5.6	75
11	High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab on A Chip, 2011, 11, 1620.	6.0	74
12	Biomolecule and Nanoparticle Transfer on Patterned and Heterogeneously Wetted Superhydrophobic Silicon Nanowire Surfaces. Langmuir, 2008, 24, 1670-1672.	3.5	69
13	Synthesis of Peptide Alkylthioesters Using the IntramolecularN,S-Acyl Shift Properties of Bis(2-sulfanylethyl)amido Peptides. Journal of Organic Chemistry, 2011, 76, 3194-3202.	3.2	63
14	Synthesis of Thiazolidine Thioester Peptides and Acceleration of Native Chemical Ligation. Organic Letters, 2011, 13, 1560-1563.	4.6	55
15	Highly efficient solid phase synthesis of large polypeptides by iterative ligations of bis(2-sulfanylethyl)amido (SEA) peptide segments. Chemical Science, 2013, 4, 4061.	7.4	55
16	One-Pot Synthesis of Antigen-Bearing, Lysine-Based Cluster Mannosides Using Two Orthogonal Chemoselective Ligation Reactions. Angewandte Chemie - International Edition, 2000, 39, 1068-1072.	13.8	54
17	Functionalization of peptides and proteins by aldehyde or keto groups. Biopolymers, 2000, 55, 165-186.	2.4	54
18	Semicarbazide-Functionalized Si(111) Surfaces for the Site-Specific Immobilization of Peptides. Langmuir, 2005, 21, 1489-1496.	3.5	54

#	Article	IF	CITATIONS
19	One-pot chemical synthesis of small ubiquitin-like modifier protein–peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates. Nature Protocols, 2015, 10, 269-292.	12.0	52
20	A statistical view of protein chemical synthesis using NCL and extended methodologies. Bioorganic and Medicinal Chemistry, 2017, 25, 4938-4945.	3.0	52
21	α-Oxo Semicarbazone Peptide or Oligodeoxynucleotide Microarrays. Bioconjugate Chemistry, 2003, 14, 430-439.	3.6	48
22	Accelerating chemoselective peptide bond formation using bis(2-selenylethyl)amido peptide selenoester surrogates. Chemical Science, 2016, 7, 2657-2665.	7.4	45
23	The deprotection of Lys(Mtt) revisited. Journal of Peptide Science, 2000, 6, 264.	1.4	45
24	Tartric Acid-Based Linker for the Solid-Phase Synthesis of C-Terminal Peptide α-Oxo Aldehydes. Journal of Organic Chemistry, 2001, 66, 4153-4160.	3.2	44
25	Combined nanogap nanoparticles nanosensor for electrical detection of biomolecular interactions between polypeptides. Applied Physics Letters, 2004, 84, 1213-1215.	3.3	44
26	Access to Large Cyclic Peptides by a One-Pot Two-Peptide Segment Ligation/Cyclization Process. Organic Letters, 2015, 17, 130-133.	4.6	42
27	Surface-assisted laser desorption–ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. Analyst, The, 2012, 137, 3058.	3.5	41
28	A new linker for the synthesis of C-terminal peptide α-oxo-aldehydes. Tetrahedron Letters, 1999, 40, 6225-6228.	1.4	39
29	Anchorage of Synthetic Peptides onto Liposomes via Hydrazone and α-Oxo Hydrazone Bonds. Preliminary Functional Investigations. Bioconjugate Chemistry, 2005, 16, 450-457.	3.6	39
30	Solid Phase Protein Chemical Synthesis. Topics in Current Chemistry, 2014, 363, 103-154.	4.0	39
31	Polypeptide Semicarbazide Glass Slide Microarrays: Characterization and Comparison with Amine Slides in Serodetection Studies. Bioconjugate Chemistry, 2004, 15, 317-325.	3.6	38
32	Peptide Immobilization on Amine-Terminated Boron-Doped Diamond Surfaces. Langmuir, 2007, 23, 4494-4497.	3.5	38
33	A novel PEG-based solid support enables the synthesis of >50 amino-acid peptide thioesters and the total synthesis of a functional SUMO-1 peptide conjugate. Chemical Science, 2014, 5, 2017-2022.	7.4	37
34	Synthesis of Clustered Glycoside-Antigen Conjugates by Two One-Pot, Orthogonal, Chemoselective Ligation Reactions: Scope and Limitations. Chemistry - A European Journal, 2001, 7, 230-239.	3.3	36
35	Sheddingâ€Generated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway. Traffic, 2012, 13, 1261-1272.	2.7	36
36	Towards thrombosis-targeted zeolitenanoparticles for laser-polarized129Xe MRI. Journal of Materials Chemistry, 2009, 19, 379-386.	6.7	35

#	Article	IF	CITATIONS
37	Bis(2-sulfanylethyl)amido Peptides Enable Native Chemical Ligation at Proline and Minimize Deletion Side-Product Formation. Organic Letters, 2013, 15, 5516-5519.	4.6	35
38	Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides. Nature Communications, 2018, 9, 2847.	12.8	35
39	Convergent synthesis of fluorescein-labelled lysine-based cluster glycosides. Tetrahedron Letters, 1999, 40, 7235-7238.	1.4	34
40	Synthesis of oligonucleotide–peptide conjugates using hydrazone chemical ligation. Tetrahedron Letters, 2002, 43, 997-999.	1.4	33
41	RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides, 2011, 32, 1463-1468.	2.4	32
42	Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples. Nanoscale, 2017, 9, 9701-9715.	5.6	32
43	Novel Hyperbranched Glycomimetics Recognized by the Human Mannose Receptor: Quinic or Shikimic Acid Derivatives as Mannose Bioisosteres. ChemBioChem, 2001, 2, 747.	2.6	31
44	Solid-Phase Functionalization of Peptides by an α-Hydrazinoacetyl Group. Journal of Organic Chemistry, 2003, 68, 7033-7040.	3.2	31
45	Selectively Activatable Latent Thiol and Selenolesters Simplify the Access to Cyclic or Branched Peptide Scaffolds. Organic Letters, 2015, 17, 3636-3639.	4.6	31
46	Chemoselective Acylation of Fully Deprotected Hydrazino Acetyl Peptides. Application to the Synthesis of Lipopeptides. Journal of Organic Chemistry, 2001, 66, 443-449.	3.2	30
47	Photochemical Immobilization of Proteins and Peptides on Benzophenone-Terminated Boron-Doped Diamond Surfaces. Langmuir, 2010, 26, 1075-1080.	3.5	30
48	From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N,S-acyl or N,Se-acyl migration reactions. Current Opinion in Chemical Biology, 2014, 22, 137-145.	6.1	30
49	Covalent linking of peptides onto oxygen-terminated boron-doped diamond surfaces. Diamond and Related Materials, 2007, 16, 892-898.	3.9	29
50	Access to Cyclic or Branched Peptides Using Bis(2-sulfanylethyl)amido Side-Chain Derivatives of Asp and Glu. Organic Letters, 2012, 14, 2222-2225.	4.6	29
51	Selenopeptide Transamidation and Metathesis. Organic Letters, 2014, 16, 4032-4035.	4.6	27
52	Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist. Chemical Science, 2015, 6, 2110-2121.	7.4	26
53	A simple and traceless solid phase method simplifies the assembly of large peptides and the access to challenging proteins. Chemical Science, 2017, 8, 5362-5370.	7.4	26
54	Simultaneous Lipidation of a Characterized Peptide Mixture by Chemoselective Ligation. Bioconjugate Chemistry, 2003, 14, 494-499.	3.6	25

#	Article	IF	CITATIONS
55	Tidbits for the synthesis of <i>bis</i> (2â€sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters. Journal of Peptide Science, 2014, 20, 92-97.	1.4	25
56	A Central Cysteine Residue Is Essential for the Thermal Stability and Function of SUMO-1 Protein and SUMO-1 Peptide–Protein Conjugates. Bioconjugate Chemistry, 2016, 27, 1540-1546.	3.6	25
57	MoS2/TiO2/SiNW surface as an effective substrate for LDI-MS detection of glucose and glutathione in real samples. Talanta, 2017, 171, 101-107.	5.5	24
58	Chemical Protein Synthesis in Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 15140-15152.	6.4	24
59	Synthesis of hydrazinopeptides using solid phase N-amination. Application to chemical ligation. Tetrahedron Letters, 1996, 37, 7259-7262.	1.4	23
60	Grafting of synthetic mannose receptor-ligands onto onion vectors for human dendritic cells targetingElectronic supplementary information (ESI) available: full experimental details. See http://www.rsc.org/suppdata/cc/b2/b206980f/. Chemical Communications, 2002, , 2446-2447.	4.1	23
61	Detecting the Chemoselective Ligation of Peptides to Silicon with the Use of Cobaltâ^Carbonyl Labels. Langmuir, 2006, 22, 7059-7065.	3.5	23
62	Synthesis, folding, and structure of the βâ€ŧurn mimic modified B1 domain of streptococcal protein G. Protein Science, 1999, 8, 2773-2783.	7.6	23
63	Affinity surface-assisted laser desorption/ionization mass spectrometry for peptide enrichment. Analyst, The, 2012, 137, 5527.	3.5	23
64	Chemical Micropatterning of Polycarbonate for Site-Specific Peptide Immobilization and Biomolecular Interactions. ChemBioChem, 2007, 8, 315-322.	2.6	22
65	Synthesis of lipopeptides using hydrazone chemical ligation. Chemical Biology and Drug Design, 1998, 52, 180-184.	1.1	22
66	Chips from Chips: Application to the Study of Antibody Responses to Methylated Proteins. Journal of Proteome Research, 2010, 9, 6467-6478.	3.7	21
67	Assembly/Disassembly of Drug Conjugates Using Imide Ligation. Organic Letters, 2010, 12, 3982-3985.	4.6	21
68	Reaction of Isocyanate-Functionalised Silicon Wafers with Complex Amino Compounds. European Journal of Organic Chemistry, 2007, 2007, 4032-4037.	2.4	20
69	Current based antibodies detection from human serum enhanced by secondary antibodies labelled with gold nanoparticles immobilized in a nanogap. Biosensors and Bioelectronics, 2008, 23, 1185-1188.	10.1	20
70	Total synthesis of biotinylated N domain of human hepatocyte growth factor. Bioorganic and Medicinal Chemistry, 2013, 21, 3486-3494.	3.0	20
71	Synthesis of Unprotected Linear or Cyclic <i>O</i> -Acyl Isopeptides in Water Using Bis(2-sulfanylethyl)amido Peptide Ligation. Organic Letters, 2015, 17, 3354-3357.	4.6	20
72	Strategies and open questions in solid-phase protein chemical synthesis. Current Opinion in Chemical Biology, 2020, 58, 1-9.	6.1	20

#	Article	IF	CITATIONS
73	Chemoselective acylation of hydrazinopeptides: a novel and mild method for the derivatization of peptides with sensitive fatty acids. Tetrahedron Letters, 2000, 41, 45-48.	1.4	19
74	Methyl phenylacetate enolate generated with the P4-tBu Schwesinger base: â€~naked' or not?. Tetrahedron Letters, 2001, 42, 9153-9155.	1.4	19
75	A cysteine selenosulfide redox switch for protein chemical synthesis. Nature Communications, 2020, 11, 2558.	12.8	19
76	Polysaccharide Microarrays for Polysaccharide-Platelet-Derived-Growth-Factor Interaction Studies. ChemBioChem, 2006, 7, 817-826.	2.6	18
77	NMRâ€based detection of acetylation sites in peptides. Journal of Peptide Science, 2010, 16, 414-423.	1.4	18
78	Synthesis of Peptide Thioacids at Neutral pH Using Bis(2-sulfanylethyl)amido Peptide Precursors. Organic Letters, 2013, 15, 5346-5349.	4.6	18
79	Synthesis and Structural and Functional Evaluation of a Protein Modified with a β-Turn Mimic. Journal of the American Chemical Society, 1998, 120, 6076-6083.	13.7	17
80	Synthesis of hydrazinopeptides using solid-phase N -electrophilic amination: extension to the Fmoc/tert -butyl strategy and chemistry of the N-N bond in strong acid media. Chemical Biology and Drug Design, 1999, 54, 270-278.	1.1	17
81	The deprotection of Lys(Mtt) revisited. Journal of Peptide Science, 2000, 6, 264-270.	1.4	17
82	Solid-Phase Enolate Chemistry Investigated Using HR-MAS NMR Spectroscopy. Journal of Organic Chemistry, 2002, 67, 526-532.	3.2	17
83	Exploration of an imide capture/N,N-acyl shift sequence for asparagine native peptide bond formation. Bioorganic and Medicinal Chemistry, 2013, 21, 3479-3485.	3.0	17
84	Catalysis of Thiol–Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. Journal of Organic Chemistry, 2018, 83, 12584-12594.	3.2	17
85	Synthesis of glyoxylyl peptides using a phosphine labile α,α′-diaminoacetic acid derivative. Tetrahedron Letters, 2004, 45, 7163-7165.	1.4	16
86	Total chemical synthesis of SUMO proteins. Tetrahedron Letters, 2016, 57, 4319-4324.	1.4	16
87	Synthesis and mannose receptor-Mediated uptake of clustered glycomimetics by human dendritic cells: effect of charge. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2723-2727.	2.2	15
88	Combined Thioether/Hydrazone Chemoselective Ligation Reactions for the Synthesis of Glycoclusterâ ^{~,} Antigen Peptide Conjugates. Bioconjugate Chemistry, 2002, 13, 887-892.	3.6	15
89	Synthesis of Peptideâ^'Protein Conjugates Using N-Succinimidyl Carbamate Chemistry. Bioconjugate Chemistry, 2010, 21, 219-228.	3.6	15
90	One-pot synthesis of dissymmetrical 4,6-disubstituted dibenzofurans. Tetrahedron Letters, 1995, 36, 7657-7660.	1.4	14

#	Article	IF	CITATIONS
91	A novel lipophilic glyoxylic acid derivative for the lipidation of peptides using salt-free hydrazone ligation. Tetrahedron Letters, 2000, 41, 10003-10007.	1.4	14
92	Synthesis by Chemoselective Ligation and Biological Evaluation of Novel Cell-Permeable PKC-ζ Pseudosubstrate Lipopeptides. Journal of Medicinal Chemistry, 2001, 44, 468-471.	6.4	14
93	Imaging of protein layers with an optical microscope for the characterization of peptide microarrays. Journal of Peptide Science, 2007, 13, 451-457.	1.4	14
94	The collagen assisted self-assembly of silicon nanowires. Nanotechnology, 2009, 20, 235601.	2.6	14
95	Insight into the SEA amide thioester equilibrium. Application to the synthesis of thioesters at neutral pH. Organic and Biomolecular Chemistry, 2016, 14, 7211-7216.	2.8	14
96	Total Chemical Synthesis of All SUMO-2/3 Dimer Combinations. Bioconjugate Chemistry, 2019, 30, 2967-2973.	3.6	14
97	The Role of the Conserved SUMO-2/3 Cysteine Residue on Domain Structure Investigated Using Protein Chemical Synthesis. Bioconjugate Chemistry, 2019, 30, 2684-2696.	3.6	13
98	A novel and mild solid phase hydroperoxydeamination reaction. Tetrahedron Letters, 1999, 40, 7315-7318.	1.4	12
99	Love wave immunosensor for antibody recognition using an innovative semicarbazide surface functionalization. Sensors and Actuators B: Chemical, 2009, 140, 616-622.	7.8	12
100	Convergent synthesis of D-(â^')-quinic and shikimic acid-containing dendrimers as potential C-lectin ligands by sulfide ligation of unprotected fragments. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2967-2975.	0.9	11
101	A novel family of amphilic α-oxo aldehydes for the site-specific modification of peptides by two palmitoyl groups in solution or in liposome suspensions. Tetrahedron Letters, 2001, 42, 6851-6853.	1.4	11
102	Design, synthesis and antimalarial activity of a glyoxylylhydrazone library. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4439-4443.	2.2	11
103	A novel α,α ′ -diaminoacetic acid derivative for the introduction of the α-oxo aldehyde functionality into peptides. Tetrahedron Letters, 2004, 45, 1271-1273.	1.4	11
104	Parallel Synthesis of a Lipopeptide Library by Hydrazone-Based Chemical Ligation. ACS Combinatorial Science, 2007, 9, 973-981.	3.3	11
105	Pedal to the Metal: The Homogeneous Catalysis of the Native Chemical Ligation Reaction. Chemistry - A European Journal, 2022, 28, e202104229.	3.3	11
106	Synthesis of an amphiphilic aldehyde using as a key step the condensation of a lipophilic glyoxylic acid amide derivative with tris(hydroxymethyl)aminomethane. Tetrahedron Letters, 2001, 42, 1875-1877.	1.4	10
107	A novel phosphoramidite for the synthesis of α-oxo aldehyde-modified oligodeoxynucleotides. Tetrahedron, 2005, 61, 6138-6142.	1.9	10
108	Hybrid Bioorganic-Inorganic Materials Prepared by Site-Specific Ligation of Peptides to Functionalized Polydisperse Silica Particles. European Journal of Organic Chemistry, 2005, 2005, 2473-2480.	2.4	10

#	Article	lF	CITATIONS
109	Silver-Catalyzed azaGly Ligation. Application to the Synthesis of Azapeptides and of Lipidâ^'Peptide Conjugates. Bioconjugate Chemistry, 2009, 20, 1397-1403.	3.6	10
110	Three-Component Synthesis of Neoglycopeptides Using a Cu(II)-Triggered Aminolysis of Peptide Hydrazide Resin and an Azide–Alkyne Cycloaddition Sequence. Organic Letters, 2011, 13, 4336-4339.	4.6	10
111	Inhibition of Latent Membrane Protein 1 Impairs the Growth and Tumorigenesis of Latency II Epstein-Barr Virus-Transformed T Cells. Journal of Virology, 2012, 86, 3934-3943.	3.4	10
112	Direct Characterization of Native Chemical Ligation of Peptides on Silicon Nanowires. Langmuir, 2012, 28, 13336-13344.	3.5	10
113	<i>Se</i> -(9-Fluorenylmethyl) Selenoesters; Preparation, Reactivity, and Use as Convenient Synthons for Selenoacids. Organic Letters, 2013, 15, 3758-3761.	4.6	10
114	Characterization of peptide attachment on silicon nanowires by X-ray photoelectron spectroscopy and mass spectrometry. Analyst, The, 2017, 142, 969-978.	3.5	10
115	COCHO-modified oxides nanoparticles by using phosphonic acid as grafting agent. Tetrahedron Letters, 2003, 44, 5617-5619.	1.4	9
116	Synthesis of glyoxylyl peptides using an Fmoc-protected α,α′-diaminoacetic acid derivative. Journal of Peptide Science, 2005, 11, 424-430.	1.4	9
117	Electrical detection of human immunoglobulins G from human serum using a microbiosensor. Biosensors and Bioelectronics, 2007, 23, 81-87.	10.1	9
118	Decoration of silicon nanostructures with copper particles for simultaneous selective capture and mass spectrometry detection of His-tagged model peptide. Analyst, The, 2014, 139, 5155-5163.	3.5	9
119	Hypoxia leads to decreased autophosphorylation of the MET receptor but promotes its resistance to tyrosine kinase inhibitors. Oncotarget, 2018, 9, 27039-27058.	1.8	9
120	Fluidics of a Nanogap. Langmuir, 2006, 22, 9784-9788.	3.5	8
121	PASE: A Web-Based Platform for Peptide/Protein Microarray Experiments. Methods in Molecular Biology, 2009, 570, 413-430.	0.9	8
122	In Situ Ligation between Peptides and Silica Nanoparticles for Making Peptide Microarrays on Polycarbonate. Bioconjugate Chemistry, 2009, 20, 550-557.	3.6	8
123	Selective cleavage of an azaGly peptide bond by copper(II). Longâ€range effect of histidine residue. Journal of Peptide Science, 2010, 16, 141-147.	1.4	8
124	Phenylthiocarbamate or <i>N</i> -Carbothiophenyl Group Chemistry in Peptide Synthesis and Bioconjugation. Bioconjugate Chemistry, 2014, 25, 629-639.	3.6	8
125	Kinetically Controlled Chemoselective Cyclization Simplifies the Access to Cyclic and Branched Peptides. Organic Letters, 2016, 18, 3842-3845.	4.6	8
126	Native Chemical Ligation at Serine Revisited. Organic Letters, 2018, 20, 7616-7619.	4.6	8

#	Article	IF	CITATIONS
127	Fast and facile preparation of nanostructured silicon surfaces for laser desorption/ionization mass spectrometry of small compounds. Rapid Communications in Mass Spectrometry, 2019, 33, 66-74.	1.5	8
128	Natural T Cell Epitope Containing Methyl Lysines on Mycobacterial Heparin-Binding Hemagglutinin. Journal of Immunology, 2020, 204, 1715-1723.	0.8	8
129	Addition diastéréosélective d'allyl cuprates à des imides chirales insaturées. Journal of Organometallic Chemistry, 1990, 388, c5-c8.	1.8	7
130	Determination of glyoxylyl-peptide concentration using oxime chemistry and RP-HPLC analysis. Journal of Peptide Science, 2006, 12, 734-738.	1.4	7
131	Ti-Cp functionalization by deposition of organic/inorganic silica nanoparticles. New Biotechnology, 2007, 24, 549-554.	2.7	7
132	Thiocarbamateâ€linked peptides by chemoselective peptide ligation. Journal of Peptide Science, 2008, 14, 1244-1250.	1.4	7
133	Semicarbazide-Functionalized Silicate Nanoparticles for Peptide Ligation. European Journal of Inorganic Chemistry, 2006, 2006, 2766-2772.	2.0	6
134	Catalysis of Hydrazone and Oxime Peptide Ligation by Arginine. Organic Letters, 2020, 22, 8608-8612.	4.6	6
135	Chemistry of hydrazinopeptides: a new hydroperoxydeamination process. Tetrahedron Letters, 1999, 40, 1491-1494.	1.4	5
136	Reactivity of Lys(NH2)-containing peptides toward endopeptidases. , 1999, 5, 352-359.		5
137	Synthesis and Chemical Reactivity ofα-Oxo Aldehyde-Supported Silicas. European Journal of Organic Chemistry, 2003, 2003, 4132-4139.	2.4	5
138	Comments on "Methyl phenylacetate enolate generated with the P4-tBu Schwesinger base: â€~naked' or not?― Tetrahedron Letters, 2003, 44, 2243.	1.4	5
139	Characterization of Nanogap Chemical Reactivity Using Peptide-Capped Gold Nanoparticles and Electrical Detection. Bioconjugate Chemistry, 2008, 19, 802-805.	3.6	5
140	Structural diversity of human class II histocompatibility molecules induced by peptide ligands. FEBS Letters, 2000, 481, 249-254.	2.8	4
141	Synthesis and chemical reactivity of semicarbazide-supported silicas. Tetrahedron Letters, 2003, 44, 4191-4194.	1.4	4
142	Chemistryâ€based protein modification strategy for endocytic pathway analysis. Biology of the Cell, 2010, 102, 351-359.	2.0	4
143	Fast Protein Modification in the Nanomolar Concentration Range Using an Oxalyl Amide as Latent Thioester. Angewandte Chemie - International Edition, 2022, , .	13.8	4
144	Solid phase synthesis of mandelic acid-derived thioethers by α-keto carbocation trapping. Tetrahedron Letters, 2004, 45, 1381-1383.	1.4	3

#	Article	IF	CITATIONS
145	Peptide Microarrays on Bisphenol A Polycarbonate. Methods in Molecular Biology, 2009, 570, 287-297.	0.9	3
146	C-terminal glyoxylyl peptides for sensitive enzyme-linked immunosorbent assays. International Journal of Peptide Research and Therapeutics, 2001, 8, 253-258.	0.1	2
147	Preparation of αâ€Oxo Semicarbazone Oligonucleotide Microarrays. Current Protocols in Nucleic Acid Chemistry, 2004, 19, Unit 12.6.	0.5	2
148	Functionalization of Biomaterials. Key Engineering Materials, 2005, 288-289, 47-50.	0.4	2
149	Carbohydrate Microarrays in 96-Well Polystyrene Microtiter Plates. Methods in Molecular Biology, 2012, 808, 377-391.	0.9	2
150	Insights into the Mechanism and Catalysis of Peptide Thioester Synthesis by Alkylselenols Provide a New Tool for Chemical Protein Synthesis. Molecules, 2021, 26, 1386.	3.8	2
151	In Situ Chemical Modification of Peptide Microarrays: Characterization by Desorption/Ionization on Silicon Nanowires. Methods in Molecular Biology, 2010, 669, 125-133.	0.9	2
152	Polysaccharide Microarrays: Application to the Identification of Heparan Sulphate Mimetics. Methods in Molecular Biology, 2012, 808, 231-240.	0.9	2
153	Thiol Catalysis of Selenosulfide Bond Cleavage by a Triarylphosphine. Journal of Organic Chemistry, 2022, 87, 9426-9430.	3.2	2
154	Semicarbazide/α-Oxo Aldehyde Site-Specific Ligation Chemistry: From Peptide Microarrays to the Micropatterning of Polycarbonate or Titanium Oxide Using Silica Nanoparticles. , 0, , 299-327.		1
155	Thiocarbamate-Linked Polysulfonate–Peptide Conjugates As Selective Hepatocyte Growth Factor Receptor Binders. Bioconjugate Chemistry, 2014, 25, 1000-1010.	3.6	1
156	Comment on "N-terminal Protein Tail Acts as Aggregation Protective Entropic Bristles: The SUMO Case― Biomacromolecules, 2020, 21, 3480-3482.	5.4	1
157	The Problem of Aspartimide Formation During Protein Chemical Synthesis Using SEA-Mediated Ligation. Springer Protocols, 2020, , 13-28.	0.3	1
158	In Situ Chemical Modification of Peptide Microarrays: Application to the Study of the Antibody Responses to Methylated Antigens. Methods in Molecular Biology, 2010, 669, 135-145.	0.9	1
159	Surface Modifications of Love Acoustic Waves Sensors for Chemical and Biological Detection. Sensor Letters, 2009, 7, 750-756.	0.4	1
160	SEA-Mediated Ligation Is Accelerated at Mildly Acidic pH: Application to the Formation of Difficult Peptide Junctions. Springer Protocols, 2020, , 1-12.	0.3	1
161	A Selenium-based Cysteine Surrogate for Protein Chemical Synthesis. Methods in Molecular Biology, 2022, , 213-239.	0.9	1
162	C-terminal glyoxylyl peptides for sensitive enzyme-linked immunosorbent assays. International Journal of Peptide Research and Therapeutics, 2001, 8, 253-258.	0.1	0

OLEG MELNYK

#	Article	IF	CITATIONS
163	Corrigendum to "A novel family of amphiphilic α-oxo aldehydes for the site-specific modification of peptides by two palmitoyl groups in solution or in liposome suspensions― Tetrahedron Letters, 2001, 42, 8255.	1.4	0
164	Design, Synthesis and Antimalarial Activity of a Glyoxylylhydrazone Library ChemInform, 2004, 35, no.	0.0	0
165	Electrical Detection of Antibodies from Human Serum Based on the Insertion of Gold-Labeled Secondary Antibodies into Microor Nanogaps. , 0, , 329-351.		0
166	Fundamental studies in nanosciences at the Institute of Electronics, Microelectronics, and Nanotechnology (IEMN). International Journal of Nanotechnology, 2008, 5, 631.	0.2	0
167	Using the Interactive Tool of the Protein Chemical Synthesis Database. Springer Protocols, 2020, , 29-36.	0.3	0
168	A new tartaric acid-based linker for the synthesis of C-terminal peptide α-oxo-aldehydes. , 2002, , 104-106.		0
169	Frontispiece: Pedal to the Metal: The Homogeneous Catalysis of the Native Chemical Ligation Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	0
170	Fast Protein Modification in the Nanomolar Concentration Range Using an Oxalyl Amide as Latent Thioester. Angewandte Chemie, 0, , .	2.0	0