List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transport phenomena in ultrafiltration/microfiltration membranes. , 2022, , 25-47.		О
2	Mass transport through capillary, biocatalytic membrane reactor. , 2022, , 281-307.		0
3	Study of Pressure Retarded Osmosis Process in Hollow Fiber Membrane: Cylindrical Model for Description of Energy Production. Energies, 2022, 15, 3558.	1.6	1
4	The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. Membranes, 2021, 11, 128.	1.4	12
5	Thermoresponsive Poly(N,N-diethylacrylamide-co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers, 2021, 13, 987.	2.0	7
6	Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane. Catalysts, 2020, 10, 1115.	1.6	2
7	Study of Prepared α-Chymotrypsin as Enzyme Nanoparticles and of Biocatalytic Membrane Reactor. Catalysts, 2020, 10, 1454.	1.6	5
8	Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors. Catalysts, 2019, 9, 358.	1.6	4
9	From "Black Box―to a Real Description of Overall Mass Transport through Membrane and Boundary Layers. Membranes, 2019, 9, 18.	1.4	2
10	Mass Transport Through a Membrane Layer. , 2019, , 21-68.		13
11	Molecular Diffusion. , 2019, , 69-90.		1
12	Diffusion Through a Plane Membrane Layer. , 2019, , 91-118.		0
13	Diffusive Plus Convective Mass Transport Through a Plane Membrane Layer. , 2019, , 185-225.		1
14	Diffusive Plus Convective Mass Transport With Chemical Reaction Through a Plane Membrane Layer. , 2019, , 227-283.		0
15	Diffusion in a Cylindrical Membrane Layer. , 2019, , 285-315.		0
16	Mass Transport in the Presence of a Fouling Layer. , 2019, , 317-336.		0
17	Transport of Fluid Phase in a Capillary Membrane. , 2019, , 347-367.		0
18	Membrane Bioreactor. , 2019, , 381-415.		1

NDDE NA

#	Article	IF	CITATIONS
19	Nanofiltration. , 2019, , 417-428.		8
20	Pervaporation. , 2019, , 429-445.		1
21	Forward Osmosis. , 2019, , 447-456.		5
22	Membrane Gas Separation. , 2019, , 457-481.		2
23	Reverse Osmosis. , 2019, , 497-503.		5
24	Pressure-Retarded Osmosis (PRO) Process. , 2019, , 505-531.		3
25	Diffusion Accompanied by Chemical Reaction Through a Plane Sheet. , 2019, , 119-183.		0
26	Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO). Journal of Membrane Science, 2018, 565, 450-462.	4.1	31
27	Survey on Biocatalytic Membrane Reactor and Membrane Aerated Biofilm Reactor. Current Organic Chemistry, 2017, 21, .	0.9	7
28	2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles. Journal of Microbiology and Biotechnology, 2017, 27, 768-774.	0.9	6
29	Improvement of the energy generation by pressure retarded osmosis. Energy, 2016, 116, 1323-1333.	4.5	16
30	Stabilization of activity of cellulase and hemicellulase enzymes by covering with polyacrylamide layer. Chemical Engineering and Processing: Process Intensification, 2015, 95, 143-150.	1.8	11
31	Description of the diffusive–convective mass transport in a hollow-fiber biphasic biocatalytic membrane reactor. Journal of Membrane Science, 2015, 482, 144-157.	4.1	14
32	Analysis of energy saving by combination of distillation and pervaporation for biofuel production. Chemical Engineering and Processing: Process Intensification, 2015, 98, 86-94.	1.8	34
33	Single Haemoglobin Nanocapsules as Test Materials for Artificial Blood. Periodica Polytechnica: Chemical Engineering, 2014, 58, 11-16.	0.5	2
34	Modelling and Prediction of Renewable Energy Generation by Pressure Retarded Osmosis. Computer Aided Chemical Engineering, 2014, 33, 1105-1110.	0.3	2
35	Overall mass transfer rates during pervaporation: effect of the convective velocity on the separation. Desalination and Water Treatment, 2014, 52, 3455-3465.	1.0	0
36	A general, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation. Journal of Membrane Science, 2014, 460, 71-81.	4.1	82

#	Article	IF	CITATIONS
37	Separate Expression of Polarization Modulus and Enrichment by Mass Transport Parameters for Membrane Gas Separation. Industrial & Engineering Chemistry Research, 2013, 52, 10441-10449.	1.8	5
38	Mass Transfer through a Biocatalytic Membrane Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 1635-1646.	1.8	13
39	Stabilization of the Cellulase Enzyme Complex as Enzyme Nanoparticle. Applied Biochemistry and Biotechnology, 2012, 168, 1372-1383.	1.4	16
40	Pervaporation. , 2012, , 267-291.		2
41	Molecular Diffusion. , 2012, , 35-44.		3
42	On Mass Transport Through a Membrane Layer. , 2012, , 1-34.		7
43	Diffusion Accompanied by Chemical Reaction Through a Plane Sheet. , 2012, , 81-120.		0
44	Diffusion in a Cylindrical Membrane Layer. , 2012, , 157-175.		0
45	Diffusive Plus Convective Mass Transport Through a Plane Membrane Layer. , 2012, , 121-156.		1
46	Transport of Fluid Phase in a Capillary Membrane. , 2012, , 177-192.		1
47	Diffusion Through a Plane Membrane Layer. , 2012, , 45-80.		0
48	Membrane Bioreactor. , 2012, , 213-247.		0
49	Nanofiltration. , 2012, , 249-266.		7
50	Diffusive Plus Convective Mass Transport Through Catalytic Membrane Layer with Dispersed Nanometer-Sized Catalyst. International Journal of Composite Materials, 2012, 2, 79-91.	0.3	3
51	Membrane mass transport by nanofiltration: Coupled effect of the polarization and membrane layers. Journal of Membrane Science, 2011, 368, 215-222.	4.1	33
52	Nanofiltration of uncharged solutes: simultaneous effect of the polarization and membrane layers on separation. Desalination and Water Treatment, 2011, 34, 70-74.	1.0	3
53	Coupled effect of the membrane properties and concentration polarization in pervaporation: Unified mass transport model. Separation and Purification Technology, 2010, 73, 194-201.	3.9	19
54	Convective and diffusive mass transport through anisotropic, capillary membrane. Chemical Engineering and Processing: Process Intensification, 2010, 49, 716-721.	1.8	5

#	Article	IF	CITATIONS
55	The effect of the concentration polarization and the membrane layer mass transport on membrane separation. Desalination and Water Treatment, 2010, 14, 220-226.	1.0	8
56	Mass Transfer through a Convection Flow Catalytic Membrane Layer with Dispersed Nanometer-Sized Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 1057-1062.	1.8	16
57	Improvement of chymotrypsin enzyme stability as single enzyme nanoparticles. Chemical Engineering Science, 2009, 64, 1053-1060.	1.9	48
58	Mass transport through anisotropic membrane layer. Desalination, 2009, 240, 54-63.	4.0	7
59	Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination, 2009, 240, 218-226.	4.0	123
60	Mass transport through biocatalytic membrane reactor. Desalination, 2009, 245, 422-436.	4.0	24
61	Basic equations of mass transfer through biocatalytic membrane layer. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 270-278.	0.8	23
62	Advances in membrane technology for the treatment and reuse of food processing wastewater. , 2008, , 663-699.		1
63	Mass Transport Through Biocatalytic Membrane Reactors. , 2008, , .		1
64	Mass Transfer through a Dense, Polymeric, Catalytic Membrane Layer with Dispersed Catalystâ€. Industrial & Engineering Chemistry Research, 2007, 46, 2295-2306.	1.8	14
65	Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chemical Engineering Science, 2007, 62, 7391-7398.	1.9	140
66	Binary, coupled mass transfer with variable diffusivity through cylindrical dense membrane. Journal of Membrane Science, 2006, 274, 159-168.	4.1	21
67	Lactic acid enantioseparation by means of porous ceramic disc and hollow fiber organic membrane. Separation and Purification Technology, 2005, 41, 299-304.	3.9	29
68	Nonlinear, coupled mass transfer through a dense membrane. Desalination, 2004, 163, 345-354.	4.0	22
69	On the three-phase mass transfer with solid particles adhered to the gas-liquid interface. Open Chemistry, 2003, 1, 160-177.	1.0	1
70	Three-Phase Mass Transfer:Â Effect of the Size Distribution. Industrial & Engineering Chemistry Research, 2003, 42, 5363-5372.	1.8	15
71	Analysis of mass transfer in hollow-fiber membranes. Desalination, 2002, 145, 147-152.	4.0	13
72	D,L-lactic acid and D,L-alanine enantioseparation by membrane process. Desalination, 2002, 148, 193-198.	4.0	64

#	Article	IF	CITATIONS
73	Comparison of D,L-Mandelic Acid Resolution on Zeolite and Silica Supported Pirkle-Type Chiral Stationary Phases. Mikrochimica Acta, 2000, 134, 205-213.	2.5	Ο
74	Three-phase mass transfer: Improved pseudo-homogeneous model. AICHE Journal, 1995, 41, 23-34.	1.8	30
75	Three-phase mass transfer: One-dimensional heterogeneous model. Chemical Engineering Science, 1995, 50, 827-836.	1.9	29
76	Mathematical Modeling of Biochemical Membrane Reactors. , 0, , 309-334.		3