Amalio FernÃ;ndez-Pacheco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245296/publications.pdf

Version: 2024-02-01

78 papers 2,973 citations

30 h-index 54 g-index

83 all docs 83 docs citations

83 times ranked 2897 citing authors

#	Article	IF	CITATIONS
1	Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nature Nanotechnology, 2022, 17, 136-142.	31.5	39
2	Domain Wall Automotion in Three-Dimensional Magnetic Helical Interconnectors. ACS Nano, 2022, 16, 8860-8868.	14.6	20
3	Non-Planar Geometrical Effects on the Magnetoelectrical Signal in a Three-Dimensional Nanomagnetic Circuit. ACS Nano, 2021, 15, 6765-6773.	14.6	16
4	Micromagnetic modeling of magnetic domain walls in curved cylindrical nanotubes and nanowires. Applied Physics Letters, 2021, 118 , .	3. 3	10
5	Fabrication of a 3D Nanomagnetic Circuit with Multi-Layered Materials for Applications in Spintronics. Micromachines, 2021, 12, 859.	2.9	10
6	Layer-by-Layer Growth of Complex-Shaped Three-Dimensional Nanostructures with Focused Electron Beams. Nano Letters, 2020, 20, 184-191.	9.1	65
7	Writing 3D Nanomagnets Using Focused Electron Beams. Materials, 2020, 13, 3774.	2.9	61
8	Artificial Double-Helix for Geometrical Control of Magnetic Chirality. ACS Nano, 2020, 14, 8084-8092.	14.6	58
9	Launching a new dimension with 3D magnetic nanostructures. APL Materials, 2020, 8, .	5.1	88
10	Fabrication and magneto-optical characterization of 3D-printed permalloy nanowires., 2020,, 85-102.		1
11	Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets. Nature Materials, 2019, 18, 679-684.	27.5	100
12	High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). ACS Applied Nano Materials, 2018, 1, 1028-1041.	5.0	54
13	Sputter Grown Fe and Fe/Cr Multilayers With Fourfold Magnetic Anisotropy on GaAs. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	2
14	Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications. Nanomaterials, 2018, 8, 483.	4.1	26
15	Vector magnetometry of Fe/Cr/Fe trilayers with biquadratic coupling. Journal Physics D: Applied Physics, 2017, 50, 19LT02.	2.8	0
16	Three-dimensional nanomagnetism. Nature Communications, 2017, 8, 15756.	12.8	398
17	Tuning shape, composition and magnetization of 3D cobalt nanowires grown by focused electron beam induced deposition (FEBID). Journal Physics D: Applied Physics, 2017, 50, 18LT01.	2.8	43
18	Controlling the canted state in antiferromagnetically coupled magnetic bilayers close to the spin reorientation transition. Applied Physics Letters, 2017, 110, 102405.	3.3	5

#	Article	IF	Citations
19	Fabrication, Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit. ACS Nano, 2017, 11, 11066-11073.	14.6	54
20	Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of  bits'. RSC Advances, 2017, 7, 37627-37635.	3.6	23
21	A magnetic shift register with out-of-plane magnetized layers. Nanotechnology, 2017, 28, 385201.	2.6	0
22	Zigzag Domain Wall Mediated Reversal in Antiferromagnetically Coupled Layers. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	1
23	Modelling focused electron beam induced deposition beyond Langmuir adsorption. Beilstein Journal of Nanotechnology, 2017, 8, 2151-2161.	2.8	18
24	Systematic layer-by-layer characterization of multilayers for three-dimensional data storage and logic. Nanotechnology, 2016, 27, 155203.	2.6	4
25	Magnetic State of Multilayered Synthetic Antiferromagnets during Soliton Nucleation and Propagation for Vertical Data Transfer. Advanced Materials Interfaces, 2016, 3, 1600097.	3.7	8
26	Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). Journal Physics D: Applied Physics, 2016, 49, 243003.	2.8	124
27	Toward Flexible Spintronics: Perpendicularly Magnetized Synthetic Antiferromagnetic Thin Films and Nanowires on Polyimide Substrates. Advanced Functional Materials, 2016, 26, 4704-4711.	14.9	50
28	Magnetic Solitons in Superlattices. Springer Series in Materials Science, 2016, , 219-238.	0.6	1
29	Vertical shift register using dipolar interaction in magnetic multilayers. Journal of Applied Physics, 2015, 118, 233905.	2.5	2
30	Controlling nucleation in perpendicularly magnetized nanowires through in-plane shape. Applied Physics Letters, 2015, 107, 092405.	3.3	14
31	A composite element bit design for magnetically encoded microcarriers for future combinatorial chemistry applications. RSC Advances, 2015, 5, 10211-10218.	3 . 6	10
32	Trapping of a magnetic soliton by modifying the boundary conditions of a synthetic ferrimagnetic superlattice. , $2015, \dots$		0
33	A robust soliton ratchet using combined antiferromagnetic and ferromagnetic interlayer couplings. Applied Physics Letters, 2015, 106, 092404.	3.3	5
34	Magnetic nanowires grown by focused electron beam-induced deposition., 2015,, 147-171.		0
35	3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography. Chemistry of Materials, 2015, 27, 6771-6778.	6.7	64
36	Combining Micromanipulation, Kerr Magnetometry and Magnetic Force Microscopy for Characterization of Three-Dimensional Magnetic Nanostructures., 2015,, 531-559.		0

#	Article	IF	Citations
37	Present and future applications of magnetic nanostructures grown by FEBID. Applied Physics A: Materials Science and Processing, 2014, 117, 1645-1658.	2.3	34
38	Magnetic properties and interlayer coupling of epitaxial Co/Cu films on Si. Journal of Applied Physics, 2014, 116, 063906.	2. 5	4
39	Multi-bit operations in vertical spintronic shift registers. Nanotechnology, 2014, 25, 105201.	2.6	20
40	Dynamic selective switching in antiferromagnetically-coupled bilayers close to the spin reorientation transition. Applied Physics Letters, 2014, 105, .	3.3	10
41	Soliton propagation in micron-sized magnetic ratchet elements. Applied Physics Letters, 2014, 104, .	3.3	9
42	Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology, 2013, 24, 345703.	2.6	14
43	Modification of domain-wall propagation in Co nanowires via Ga+ irradiation. European Physical Journal B, 2013, 86, 1.	1.5	15
44	Magnetic ratchet for three-dimensional spintronic memory and logic. Nature, 2013, 493, 647-650.	27.8	180
45	DOMAIN IMAGING DURING SOLITON PROPAGATION IN A 3D MAGNETIC RATCHET. Spin, 2013, 03, 1340013.	1.3	17
46	Nanoscale Electrical Contacts Grown by Focused Ion Beam (FIB)-Induced Deposition. Lecture Notes in Nanoscale Science and Technology, 2013, , 95-122.	0.8	3
47	Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Scientific Reports, 2013, 3, 1492.	3.3	148
48	Magnetic domain wall induced, localized nanowire reversal. Applied Physics Letters, 2012, 101, 062415.	3.3	7
49	Giant anomalous Hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition. Journal Physics D: Applied Physics, 2012, 45, 035001.	2.8	24
50	Controllable nucleation and propagation of topological magnetic solitons in CoFeB/Ru ferrimagnetic superlattices. Physical Review B, 2012, 86, .	3.2	20
51	Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers. Applied Physics Letters, 2012, 100, .	3.3	51
52	Domain wall interactions at a cross-shaped vertex. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 5794-5805.	3.4	5
53	Correlation between the magnetic imaging of cobalt nanoconstrictions and their magnetoresistance response. Nanotechnology, 2012, 23, 105703.	2.6	9
54	Dynamic Oscillations of Coupled Domain Walls. Physical Review Letters, 2012, 108, 187202.	7.8	29

#	Article	IF	CITATIONS
55	Conduction in Atomic-Sized Magnetic Metallic Constrictions Created by FIB., 2011,, 83-97.		O
56	Pt–C Nanowires Created by FIBID and FEBID., 2011,, 99-127.		0
57	Studies of Nanoconstrictions, Nanowires and Feâ, f Oâ, g , Thin Films. , 2011, , .		4
58	Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Research Letters, 2011, 6, 407.	5.7	47
59	Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Research Letters, 2011, 6, 592.	5.7	48
60	Fast domain wall motion in magnetic combÂstructures. Nature Materials, 2010, 9, 980-983.	27.5	105
61	Fe ₃ O ₄ Epitaxial Thin Films and Heterostructures: Magnetotransport and Magnetic Properties. Advances in Science and Technology, 2010, 67, 82-91.	0.2	6
62	High Conductivity in Hydrothermally Grown AgCuO ₂ Single Crystals Verified Using Focused-Ion-Beam-Deposited Nanocontacts. Inorganic Chemistry, 2010, 49, 10977-10983.	4.0	22
63	Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Physical Review B, 2009, 79, .	3.2	57
64	High-field Hall effect and magnetoresistance in Fe3O4 epitaxial thin films up to 30 Tesla. Applied Physics Letters, 2009, 95, .	3.3	26
65	Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. Journal Physics D: Applied Physics, 2009, 42, 055005.	2.8	145
66	Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology, 2009, 20, 475704.	2.6	60
67	Origin of the Difference in the Resistivity of As-Grown Focused-Ion- and Focused-Electron-Beam-Induced Pt Nanodeposits. Journal of Nanomaterials, 2009, 2009, 1-11.	2.7	83
68	Tunneling and anisotropic-tunneling magnetoresistance in iron nanoconstrictions fabricated by focused-ion-beam. Materials Research Society Symposia Proceedings, 2009, 1181, 1.	0.1	1
69	Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Materials Research Society Symposia Proceedings, 2009, 1180, 1.	0.1	13
70	Direct observation of melting in a two-dimensional superconducting vortex lattice. Nature Physics, 2009, 5, 651-655.	16.7	115
71	Magnetoresistance between oxidized Co-rich particles grown by high current electrochemical deposition. Solid State Communications, 2009, 149, 2043-2046.	1.9	0
72	Creation of stable nanoconstrictions in metallic thin films via progressive narrowing by focused-ion-beam technique and in situ control of resistance. Microelectronic Engineering, 2009, 86, 639-641.	2.4	5

#	Article	IF	CITATIONS
73	Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Applied Physics Letters, 2009, 94, 192509.	3.3	63
74	Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New Journal of Physics, 2008, 10, 093005.	2.9	66
75	Exploring the conduction in atomic-sized metallic constrictions created by controlled ion etching. Nanotechnology, 2008, 19, 415302.	2.6	12
76	Giant planar Hall effect in epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mn>3 films and its temperature dependence. Physical Review B, 2008, 78, .</mml:mn></mml:msub></mml:mrow></mml:math>	3 < /สว 2กไ:mr	า> ช/ zmml:msul
77	Universal scaling of the anomalous Hall effect in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:m mathvariant="normal">O<mml:mn>4</mml:mn><td>suls22 mml</td><td>:m\$7</td></mml:m></mml:mrow></mml:math>	su ls 22 mml	:m \$ 7
78	Magnetotransport properties of Fe3O4 thin films for applications in spin electronics. Microelectronic Engineering, 2007, 84, 1660-1664.	2.4	32