Yong Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4245153/yong-zhu-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 18,696 136 52 h-index g-index citations papers 8.1 20,978 170 7.21 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
161	Boundary curvature guided programmable shape-morphing kirigami sheets <i>Nature Communications</i> , 2022 , 13, 530	17.4	8
160	Evoked Tactile Feedback and Control Scheme on Functional Utility of Prosthetic Hand. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 1308-1315	4.2	0
159	Soft wearable sensors for monitoring symptoms of COVID-19 and other respiratory diseases: a review. <i>Progress in Biomedical Engineering</i> , 2022 , 4, 012001	7.2	2
158	Object Recognition via Evoked Sensory Feedback during Control of a Prosthetic Hand. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 207-214	4.2	1
157	Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. <i>Composite Structures</i> , 2022 , 279, 114759	5.3	1
156	Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors <i>Nature Communications</i> , 2022 , 13, 2739	17.4	1
155	Emerging Wearable Sensors for Plant Health Monitoring (Adv. Funct. Mater. 52/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170387	15.6	1
154	Patterning of Metal Nanowire Networks: Methods and Applications <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2021 , 13, 60736-60762	9.5	6
153	Closed-loop control of a prosthetic finger via evoked proprioceptive information. <i>Journal of Neural Engineering</i> , 2021 , 18,	5	1
152	A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. <i>ACS Applied Materials & Discourse Sensing Textile Heater Using Silver Nanowire Composite ACS Applied Materials & Discourse Sensing Textile Heater Using Silver Nanowire Composite. <i>ACS Applied Materials & Discourse Sensing Textile Heater Using Silver Nanowire Composite ACS Applied Materials & Discourse Sensing Textile Heater Using Silver Nanowire Composite. <i>ACS Applied Materials & Discourse Sensing Se</i></i></i>	9.5	7
151	Achieving High-Resolution Electrohydrodynamic Printing of Nanowires on Elastomeric Substrates through Surface Modification. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 192-202	4	11
150	Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. <i>Matter</i> , 2021 , 4, 2553-2570	12.7	23
149	Static and dynamic proprioceptive recognition through vibrotactile stimulation. <i>Journal of Neural Engineering</i> , 2021 , 18,	5	2
148	In Situ Thermomechanical Loading for TEM Studies of Nanocrystalline Alloys. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2420-2424	0.5	
147	Tensile detwinning in bi-twinned metallic nanowires. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1488-1490	0.5	
146	Effect of electrode characteristics on electromyographic activity of the masseter muscle. <i>Journal of Electromyography and Kinesiology</i> , 2021 , 56, 102492	2.5	0
145	Noninvasive and Nonocclusive Blood Pressure Monitoring via a Flexible Piezo-Composite Ultrasonic Sensor. <i>IEEE Sensors Journal</i> , 2021 , 21, 2642-2650	4	13

(2020-2021)

144	Interaction of dislocations with twinning boundary in bi-twinned metallic nanowires. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1960-1962	0.5	
143	Recycling of Nanowire Percolation Network for Sustainable Soft Electronics. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100588	6.4	5
142	A Flexible Piezo-Composite Ultrasound Blood Pressure Sensor with Silver Nanowire-based Stretchable Electrodes 2020 ,		1
141	Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. <i>Journal of Neural Engineering</i> , 2020 , 17, 036020	5	3
140	In-situ TEM study of dislocation interaction with twin boundary and retraction in twinned metallic nanowires. <i>Acta Materialia</i> , 2020 , 196, 304-312	8.4	15
139	Object Shape and Surface Topology Recognition Using Tactile Feedback Evoked through Transcutaneous Nerve Stimulation. <i>IEEE Transactions on Haptics</i> , 2020 , 13, 152-158	2.7	11
138	Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. <i>ACS Nano</i> , 2020 , 14, 5798-5805	16.7	74
137	Competition between shear localization and tensile detwinning in twinned nanowires. <i>Physical Review Materials</i> , 2020 , 4,	3.2	2
136	. IEEE Transactions on Industrial Electronics, 2020 , 67, 6955-6962	8.9	12
135	Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. <i>Advanced Materials</i> , 2020 , 32, e1902343	24	106
134	Microelectromechanical Systems for Nanomechanical Testing: Electrostatic Actuation and Capacitive Sensing for High-Strain-Rate Testing. <i>Experimental Mechanics</i> , 2020 , 60, 329-343	2.6	10
133	Microelectromechanical Systems for Nanomechanical Testing: Displacement- and Force-Controlled Tensile Testing with Feedback Control. <i>Experimental Mechanics</i> , 2020 , 60, 1005-1015	2.6	6
132	Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and High-Efficiency Semitransparent Organic Photovoltaics. <i>Solar Rrl</i> , 2020 , 4, 2000328	7.1	21
131	Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 50675-50683	9.5	10
130	Stiffness Perception using Transcutaneous Electrical Stimulation during Active and Passive Prosthetic Control. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2020,	0.9	3
129	2020, 3909-3912 Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. ACS Applied Materials & Amp; Interfaces, 2020, 12, 41696-41703	9.5	20
128	In Situ Nano-thermo-mechanical Experiment Reveals Brittle to Ductile Transition in Si Nanowires. <i>Microscopy and Microanalysis</i> , 2020 , 26, 3192-3194	0.5	1

126	Maximum Spread of Droplet Impacting onto Solid Surfaces with Different Wettabilities: Adopting a Rim-Lamella Shape. <i>Langmuir</i> , 2019 , 35, 3204-3214	4	18
125	Evoked Haptic Sensation in the Hand With Concurrent Non-Invasive Nerve Stimulation. <i>IEEE Transactions on Biomedical Engineering</i> , 2019 , 66, 2761-2767	5	13
124	Printed Electronics: Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications (Adv. Mater. Technol. 5/2019). <i>Advanced Materials Technologies</i> , 2019 , 4, 1970029	6.8	7
123	Hydrogen embrittlement in metallic nanowires. <i>Nature Communications</i> , 2019 , 10, 2004	17.4	22
122	Interfacial shear stress transfer at nanowire-polymer interfaces with van der Waals interactions and chemical bonding. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 127, 191-207	5	10
121	Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors. <i>ACS Applied Materials & Design Application Applied Materials & Design Applied & Design Appl</i>	3 <i>8</i> -₹78	4 2 4
120	Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800546	6.8	194
119	Electrocardiogram of a Silver Nanowire Based Dry Electrode: Quantitative Comparison With the Standard Ag/AgCl Gel Electrode. <i>IEEE Access</i> , 2019 , 7, 20789-20800	3.5	13
118	Multifunctional Electronic Textiles Using Silver Nanowire Composites. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2019 , 11, 31028-31037	9.5	55
117	Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires. <i>ACS Nano</i> , 2019 , 13, 9082-9090	16.7	15
116	In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires. <i>Nano Letters</i> , 2019 , 19, 5327-5334	11.5	17
115	Equi-biaxial compressive strain in graphene: Grāeisen parameter and buckling ridges. <i>2D Materials</i> , 2019 , 6, 015026	5.9	12
114	Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. <i>Journal of Neural Engineering</i> , 2019 , 17, 016002	5	11
113	Evoked haptic sensations in the hand via non-invasive proximal nerve stimulation. <i>Journal of Neural Engineering</i> , 2018 , 15, 046005	5	21
112	Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. <i>Nanoscale</i> , 2018 , 10, 6806-6811	7.7	149
111	A Novel Finger Kinematic Tracking Method Based on Skin-Like Wearable Strain Sensors. <i>IEEE Sensors Journal</i> , 2018 , 18, 3010-3015	4	19
110	Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS Films. <i>Scientific Reports</i> , 2018 , 8, 6724	4.9	32
109	Characterization and Modeling of Catalyst-free Carbon-Assisted Synthesis of ZnO Nanowires. Journal of Manufacturing Processes, 2018 , 32, 438-444	5	3

108	Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet. <i>Smart Materials and Structures</i> , 2018 , 27, 055009	3.4	10	
107	Origami/Kirigami-Guided Morphing of Composite Sheets. <i>Advanced Functional Materials</i> , 2018 , 28, 1802	2716586	29	
106	Anelastic Behavior in Crystalline Nanowires. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1908-1909	0.5		
105	Nanomaterial-Enabled Wearable Sensors for Healthcare. <i>Advanced Healthcare Materials</i> , 2018 , 7, 17008	38 <u>9</u> 0.1	282	
104	Merged Haptic Sensation in the Hand during Concurrent Non-Invasive Proximal Nerve Stimulation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2018, 2018, 2186-2189	0.9	2	
103	Atomic Layer Deposition: Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors (Adv. Mater. Interfaces 22/2018). <i>Advanced Materials Interfaces</i> , 2018 , 5, 1870109	4.6	0	
102	Anomalous Tensile Detwinning in Twinned Metallic Nanowires. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1824-1825	0.5		
101	Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801379	4.6	1	
100	Shape Morphing: Origami/Kirigami-Guided Morphing of Composite Sheets (Adv. Funct. Mater. 44/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870314	15.6	2	
99	Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics. <i>Scientific Reports</i> , 2018 , 8, 15167	4.9	47	
98	Drug Delivery: Thrombin-Responsive Transcutaneous Patch for Auto-Anticoagulant Regulation (Adv. Mater. 4/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2	
97	Hypoxia and HO Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. <i>Nano Letters</i> , 2017 , 17, 733-739	11.5	172	
96	Soft electrothermal actuators using silver nanowire heaters. <i>Nanoscale</i> , 2017 , 9, 3797-3805	7.7	108	
95	A review on mechanics and mechanical properties of 2D materials@raphene and beyond. <i>Extreme Mechanics Letters</i> , 2017 , 13, 42-77	3.9	581	
94	A Wearable Hydration Sensor with Conformal Nanowire Electrodes. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601159	10.1	119	
93	Mechanics of Crystalline Nanowires: An Experimental Perspective. <i>Applied Mechanics Reviews</i> , 2017 , 69,	8.6	34	
92	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. <i>Nano Research</i> , 2017 , 10, 1393-1402	10	55	
91	Controlling the self-folding of a polymer sheet using a local heater: the effect of the polymer-heater interface. <i>Soft Matter</i> , 2017 , 13, 3863-3870	3.6	21	

		Yong	ZHU
90	Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2017 , 11, 920-932	5.1	82
89	Pop-up assembly of 3D structures actuated by heat shrinkable polymers. <i>Smart Materials and Structures</i> , 2017 , 26, 125011	3.4	16
88	Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation. <i>Scientific Reports</i> , 2017 , 7, 9145	4.9	12
87	Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and Graphene (on Cu). <i>Journal of Electronic Materials</i> , 2017 , 46, 1010-1021	1.9	2
86	Thrombin-Responsive Transcutaneous Patch for Auto-Anticoagulant Regulation. <i>Advanced Materials</i> , 2017 , 29, 1604043	24	65
85	Piezoelectric Floating Element Shear Stress Sensor for the Wind Tunnel Flow Measurement. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 7304-7312	8.9	7
84	Anomalous Tensile Detwinning in Twinned Nanowires. <i>Physical Review Letters</i> , 2017 , 119, 256101	7.4	38
83	Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 95, 25-43	5	39
82	Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2016 , 20, 1251-1264	7.2	113
81	Microstructure and tensile behaviour of pure titanium produced after high-energy shot peening. <i>Materials Science and Technology</i> , 2016 , 32, 1323-1329	1.5	11
80	Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. <i>Jom</i> , 2016 , 68, 1145-1	12515	85
79	Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2016 , 83,	2.7	19
78	In Situ Nanomechanical Testing of Crystalline Nanowires in Electron Microscopes. <i>Jom</i> , 2016 , 68, 84-93	2.1	12
77	Evolution of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes. <i>Small</i> , 2016 , 12, 818-24	11	11
76	Silver nanowire based wearable sensors for multimodal sensing 2016 ,		3
75	On the size-dependent elasticity of penta-twinned silver nanowires. <i>Extreme Mechanics Letters</i> , 2016 , 8, 177-183	3.9	31
74	Mechanical Force-Triggered Drug Delivery. <i>Chemical Reviews</i> , 2016 , 116, 12536-12563	68.1	179
73	Wearable silver nanowire dry electrodes for electrophysiological sensing. <i>RSC Advances</i> , 2015 , 5, 11627	-3.1 / 632	2 145

(2014-2015)

72	Large anelasticity and associated energy dissipation in single-crystalline nanowires. <i>Nature Nanotechnology</i> , 2015 , 10, 687-91	28.7	59
71	Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	54
70	Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires. <i>Nano Letters</i> , 2015 , 15, 4037-44	11.5	95
69	Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. <i>ACS Nano</i> , 2015 , 9, 9407-15	16.7	157
68	A review of microelectromechanical systems for nanoscale mechanical characterization. <i>Journal of Micromechanics and Microengineering</i> , 2015 , 25, 093001	2	45
67	Design and operation of silver nanowire based flexible and stretchable touch sensors. <i>Journal of Materials Research</i> , 2015 , 30, 79-85	2.5	39
66	RF MEMS switches for smart antennas. <i>Microsystem Technologies</i> , 2015 , 21, 487-495	1.7	17
65	Measuring graphene adhesion using atomic force microscopy with a microsphere tip. <i>Nanoscale</i> , 2015 , 7, 10760-6	7.7	77
64	Stretchable Conductors: Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices (Adv. Mater. 9/2015). <i>Advanced Materials</i> , 2015 , 27, 1479-1479	24	4
63	Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing. <i>Proceedings of the IEEE</i> , 2015 , 103, 665-681	14.3	124
62	Silver nanowire strain sensors for wearable body motion tracking 2015,		1
61	Nanomaterial-enabled stretchable conductors: strategies, materials and devices. <i>Advanced Materials</i> , 2015 , 27, 1480-511	24	510
60	Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. <i>Nature Communications</i> , 2015 , 6, 5983	17.4	114
59	Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. <i>Nanoscale</i> , 2014 , 6, 2345-52	7.7	748
58	Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoSIfilms onto arbitrary substrates. <i>ACS Nano</i> , 2014 , 8, 11522-8	16.7	281
57	Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. <i>Nano Letters</i> , 2014 , 14, 754-8	11.5	130
56	Simple geometric model to describe self-folding of polymer sheets. <i>Physical Review E</i> , 2014 , 89, 042601	2.4	23
55	Novel wearable EMG sensors based on nanowire technology. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2014 , 2014, 1674-7	0.9	4

49

Soft Dry Electrodes for Electrocardiogram with Conductive Silver Nanowires. Materials Research 54 Society Symposia Proceedings, 2014, 1685, 54 Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate. Advanced 15.6 175 53 Functional Materials, 2014, 24, 396-402 Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS 206 52 9.5 Applied Materials & Interfaces, 2014, 6, 4248-53 Stress relaxation in carbon nanotube-based fibers for load-bearing applications. Carbon, 2013, 52, 347-355.4 Fabrication of functional nanowire devices on unconventional substrates using strain-release 50 9.5 39 assembly. ACS Applied Materials & Therfaces, 2013, 5, 256-61 A microelectromechanical system for thermomechanical testing of nanostructures. Applied Physics 28 49 3.4 Letters, 2013, 103, 263114 A Novel Bidirectional Z-Shaped Thermally Actuated RF MEMS Switch for Multiple-Beam Antenna 48 0.5 1 Array. Advanced Materials Research, 2013, 705, 264-269 Temperature control in thermal microactuators with applications to in-situ nanomechanical testing. 47 25 3.4 Applied Physics Letters, 2013, 102, 013101 Temperature-dependent material properties of Z-shaped MEMS thermal actuators made of single 46 6 2 crystalline silicon. Journal of Micromechanics and Microengineering, 2013, 23, 125036 Buckling of aligned carbon nanotubes as stretchable conductors: a new manufacturing strategy. 24 45 143 Advanced Materials, **2012**, 24, 1073-7 Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance 44 11 42 frequency. Small, 2012, 8, 2571-6 Z-Shaped MEMS Thermal Actuators: Piezoresistive Self-Sensing and Preliminary Results for 2.5 27 43 Feedback Control. Journal of Microelectromechanical Systems, 2012, 21, 596-604 Analysis of Nonlinear Phenomena in a Thermal Micro-Actuator With a Built-In Thermal Position 42 4 17 Sensor. IEEE Sensors Journal, 2012, 12, 1772-1784 Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Physical 41 3.3 224 Review B, 2012, 85, Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors. Advanced Functional Materials, 15.6 189 40 **2012**, 22, 1279-1283 Highly conductive and stretchable silver nanowire conductors. Advanced Materials, 2012, 24, 5117-22 982 39 24 38 Bidirectional Electrothermal Actuator With Z-Shaped Beams. IEEE Sensors Journal, 2012, 12, 2508-2509 4 33

Static friction between silicon nanowires and elastomeric substrates. ACS Nano, 2011, 5, 7404-10

37

36	Strain-release assembly of nanowires on stretchable substrates. ACS Nano, 2011, 5, 1556-63	16.7	80
35	Controlled 3D buckling of silicon nanowires for stretchable electronics. <i>ACS Nano</i> , 2011 , 5, 672-8	16.7	176
34	\${rm MgB}_{2}/{rm MgO/MgB}_{2}\$ Josephson Junctions for High-Speed Circuits. <i>IEEE Transactions on Applied Superconductivity</i> , 2011 , 21, 115-118	1.8	8
33	Carbon-based supercapacitors produced by activation of graphene. <i>Science</i> , 2011 , 332, 1537-41	33.3	4940
32	Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20941-6	11.5	20
31	A New Electrothermal Microactuator with Z-shaped Beams. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2011 , 209-213	0.3	1
30	High-Jc MgB2 Josephson junctions with operating temperature up to 40 K. <i>Applied Physics Letters</i> , 2010 , 96, 042506	3.4	22
29	An electrothermal microactuator with Z-shaped beams. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 085014	2	68
28	Mechanical properties of ZnO nanowires under different loading modes. Nano Research, 2010, 3, 271-28	80 0	158
27	Tailoring the Load Carrying Capacity of MWCNTs Through Inter-shell Atomic Bridging. <i>Experimental Mechanics</i> , 2009 , 49, 169-182	2.6	39
26	Direct extraction of rate-dependent traction eparation laws for polyurea/steel interfaces. <i>International Journal of Solids and Structures</i> , 2009 , 46, 31-51	3.1	112
25	Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. <i>Science</i> , 2009 , 324, 1302-5	33.3	2605
24	Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. <i>Nano Letters</i> , 2009 , 9, 3934-9	11.5	316
23	Friction and shear strength at the nanowire-substrate interfaces. <i>Nanoscale Research Letters</i> , 2009 , 5, 291-5	5	23
22	Nanoscale Testing of One-Dimensional Nanostructures 2008 , 280-304		2
21	A Microelectromechanical System for Nano-Scale Testing of One Dimensional Nanostructures. <i>Sensor Letters</i> , 2008 , 6, 76-87	0.9	8
20	Ultrastrong, Stiff, and Lightweight Carbon-Nanotube Fibers. Advanced Materials, 2007, 19, 4198-4201	24	379
19	Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures. <i>Experimental Mechanics</i> , 2007 , 47, 7-24	2.6	62

18	Microstructures of SiC nanoparticle-doped MgB2He tapes. <i>Journal of Applied Physics</i> , 2007 , 102, 013913	3 2.5	35
17	Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 1219-1231	2.5	124
16	Nanoscale disorder in high critical field, carbon-doped MgB2 hybrid physical-chemical vapor deposition thin films. <i>Applied Physics Letters</i> , 2007 , 91, 082513	3.4	18
15	Electro-Thermal Actuator for On-Chip Nanoscale Tensile Tests: Analytical Modelling and Multi-Physics Simulations. <i>Sensor Letters</i> , 2007 , 5, 592-607	0.9	9
14	A thermal actuator for nanoscalein situmicroscopy testing: design and characterization. <i>Journal of Micromechanics and Microengineering</i> , 2006 , 16, 242-253	2	202
13	MEMS-based Material Testing Systems 2006 , 1-10		1
12	Shape-induced ferromagnetic ordering in a triangular array of magnetized disks. <i>Applied Physics Letters</i> , 2005 , 87, 202504	3.4	2
11	A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. <i>Applied Physics Letters</i> , 2005 , 86, 013506	3.4	109
10	An electromechanical material testing system for in situ electron microscopy and applications. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 14503-8	11.5	281
9	Reliability of capacitive RF MEMS switches at high and low temperatures. <i>International Journal of RF and Microwave Computer-Aided Engineering</i> , 2004 , 14, 317-328	1.5	20
8	Effect of temperature on capacitive RF MEMS switch performancell coupled-field analysis. <i>Journal of Micromechanics and Microengineering</i> , 2004 , 14, 1270-1279	2	65
7	An experimental/computational approach to identify moduli and residual stress in MEMS radio-frequency switches. <i>Experimental Mechanics</i> , 2003 , 43, 309-316	2.6	17
6	Viscosity of interfacial water. <i>Physical Review Letters</i> , 2001 , 87, 096104	7.4	207
5	Rate-dependent slip of Newtonian liquid at smooth surfaces. <i>Physical Review Letters</i> , 2001 , 87, 096105	7.4	468
4	A Novel MEMS-based Nanoscale Material Testing System		1
3	Printed Strain Sensors for On-Skin Electronics. Small Structures, 2100131	8.7	5
2	Emerging Wearable Sensors for Plant Health Monitoring. Advanced Functional Materials, 2106475	15.6	15
1	Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. <i>Advanced Materials Technologies</i> ,2101637	6.8	2