
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245153/publications.pdf Version: 2024-02-01

УОМС 7НЦ

#	Article	IF	CITATIONS
1	Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 2011, 332, 1537-1541.	6.0	5,528
2	Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science, 2009, 324, 1302-1305.	6.0	2,814
3	Highly Conductive and Stretchable Silver Nanowire Conductors. Advanced Materials, 2012, 24, 5117-5122.	11.1	1,139
4	A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters, 2017, 13, 42-77.	2.0	920
5	Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6, 2345.	2.8	895
6	Nanomaterialâ€Enabled Stretchable Conductors: Strategies, Materials and Devices. Advanced Materials, 2015, 27, 1480-1511.	11.1	594
7	Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces. Physical Review Letters, 2001, 87, 096105.	2.9	539
8	Ultrastrong, Stiff, and Lightweight Carbonâ€Nanotube Fibers. Advanced Materials, 2007, 19, 4198-4201.	11.1	419
9	Nanomaterialâ€Enabled Wearable Sensors for Healthcare. Advanced Healthcare Materials, 2018, 7, 1700889.	3.9	412
10	Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS ₂ Films onto Arbitrary Substrates. ACS Nano, 2014, 8, 11522-11528.	7.3	367
11	Mechanical Properties of Vaporâ^'Liquidâ^'Solid Synthesized Silicon Nanowires. Nano Letters, 2009, 9, 3934-3939.	4.5	363
12	An electromechanical material testing system for in situ electron microscopy and applications. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14503-14508.	3.3	328
13	Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Advanced Materials Technologies, 2019, 4, 1800546.	3.0	307
14	Size effects on elasticity, yielding, and fracture of silver nanowires: <i>In situ</i> experiments. Physical Review B, 2012, 85, .	1.1	266
15	A thermal actuator for nanoscalein situmicroscopy testing: design and characterization. Journal of Micromechanics and Microengineering, 2006, 16, 242-253.	1.5	262
16	Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires. ACS Applied Materials & Interfaces, 2014, 6, 4248-4253.	4.0	260
17	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
18	Viscosity of Interfacial Water. Physical Review Letters, 2001, 87, 096104.	2.9	239

Үолд Zhu

#	Article	IF	CITATIONS
19	Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate. Advanced Functional Materials, 2014, 24, 396-402.	7.8	229
20	Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors. Advanced Functional Materials, 2012, 22, 1279-1283.	7.8	221
21	Hypoxia and H ₂ O ₂ Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.	4.5	220
22	Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 2018, 10, 6806-6811.	2.8	208
23	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	11.1	198
24	Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. ACS Nano, 2015, 9, 9407-9415.	7.3	196
25	Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics. ACS Nano, 2011, 5, 672-678.	7.3	192
26	Mechanical properties of ZnO nanowires under different loading modes. Nano Research, 2010, 3, 271-280.	5.8	186
27	Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Advances, 2015, 5, 11627-11632.	1.7	185
28	Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. ACS Nano, 2020, 14, 5798-5805.	7.3	181
29	A Wearable Hydration Sensor with Conformal Nanowire Electrodes. Advanced Healthcare Materials, 2017, 6, 1601159.	3.9	167
30	Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing. Proceedings of the IEEE, 2015, 103, 665-681.	16.4	166
31	Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density. Nano Letters, 2014, 14, 754-758.	4.5	161
32	Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization. Journal of Microelectromechanical Systems, 2007, 16, 1219-1231.	1.7	159
33	Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1251-1264.	3.9	159
34	Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy. Advanced Materials, 2012, 24, 1073-1077.	11.1	158
35	Soft electrothermal actuators using silver nanowire heaters. Nanoscale, 2017, 9, 3797-3805.	2.8	142
36	Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 920-932.	2.7	139

#	Article	IF	CITATIONS
37	Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nature Communications, 2015, 6, 5983.	5.8	135
38	Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces. International Journal of Solids and Structures, 2009, 46, 31-51.	1.3	131
39	Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors. ACS Applied Materials & Interfaces, 2019, 11, 17836-17842.	4.0	129
40	Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. Jom, 2016, 68, 1145-1155.	0.9	124
41	Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires. Nano Letters, 2015, 15, 4037-4044.	4.5	122
42	A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Applied Physics Letters, 2005, 86, 013506.	1.5	119
43	Multifunctional Electronic Textiles Using Silver Nanowire Composites. ACS Applied Materials & Interfaces, 2019, 11, 31028-31037.	4.0	95
44	Strain-Release Assembly of Nanowires on Stretchable Substrates. ACS Nano, 2011, 5, 1556-1563.	7.3	94
45	Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale, 2015, 7, 10760-10766.	2.8	93
46	Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter, 2021, 4, 2553-2570.	5.0	93
47	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	11.1	90
48	An electrothermal microactuator with Z-shaped beams. Journal of Micromechanics and Microengineering, 2010, 20, 085014.	1.5	81
49	Effect of temperature on capacitive RF MEMS switch performance—a coupled-field analysis. Journal of Micromechanics and Microengineering, 2004, 14, 1270-1279.	1.5	74
50	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	5.8	74
51	Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nature Nanotechnology, 2015, 10, 687-691.	15.6	70
52	Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures. Experimental Mechanics, 2007, 47, 7-24.	1.1	69
53	Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	68
54	Emerging Wearable Sensors for Plant Health Monitoring. Advanced Functional Materials, 2021, 31, 2106475.	7.8	65

Үолс Zhu

#	Article	IF	CITATIONS
55	Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics. Scientific Reports, 2018, 8, 15167.	1.6	64
56	A review of microelectromechanical systems for nanoscale mechanical characterization. Journal of Micromechanics and Microengineering, 2015, 25, 093001.	1.5	60
57	Static Friction between Silicon Nanowires and Elastomeric Substrates. ACS Nano, 2011, 5, 7404-7410.	7.3	55
58	Measuring True Young's Modulus of a Cantilevered Nanowire: Effect of Clamping on Resonance Frequency. Small, 2012, 8, 2571-2576.	5.2	49
59	Design and operation of silver nanowire based flexible and stretchable touch sensors. Journal of Materials Research, 2015, 30, 79-85.	1.2	48
60	Evoked haptic sensations in the hand via non-invasive proximal nerve stimulation. Journal of Neural Engineering, 2018, 15, 046005.	1.8	48
61	Origami/Kirigamiâ€Guided Morphing of Composite Sheets. Advanced Functional Materials, 2018, 28, 1802768.	7.8	48
62	Anomalous Tensile Detwinning in Twinned Nanowires. Physical Review Letters, 2017, 119, 256101.	2.9	47
63	Tailoring the Load Carrying Capacity of MWCNTs Through Inter-shell Atomic Bridging. Experimental Mechanics, 2009, 49, 169-182.	1.1	45
64	Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate. Journal of the Mechanics and Physics of Solids, 2016, 95, 25-43.	2.3	44
65	Boundary curvature guided programmable shape-morphing kirigami sheets. Nature Communications, 2022, 13, 530.	5.8	44
66	Mechanics of Crystalline Nanowires: An Experimental Perspective. Applied Mechanics Reviews, 2017, 69,	4.5	43
67	Fabrication of Functional Nanowire Devices on Unconventional Substrates Using Strain-Release Assembly. ACS Applied Materials & Interfaces, 2013, 5, 256-261.	4.0	42
68	Maximum Spread of Droplet Impacting onto Solid Surfaces with Different Wettabilities: Adopting a Rim–Lamella Shape. Langmuir, 2019, 35, 3204-3214.	1.6	42
69	Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films. Scientific Reports, 2018, 8, 6724.	1.6	40
70	Bidirectional Electrothermal Actuator With Z-Shaped Beams. IEEE Sensors Journal, 2012, 12, 2508-2509.	2.4	38
71	On the size-dependent elasticity of penta-twinned silver nanowires. Extreme Mechanics Letters, 2016, 8, 177-183.	2.0	38
72	Noninvasive and Nonocclusive Blood Pressure Monitoring via a Flexible Piezo-Composite Ultrasonic Sensor. IEEE Sensors Journal, 2021, 21, 2642-2650.	2.4	38

Үолс Zhu

#	Article	IF	CITATIONS
73	Microstructures of SiC nanoparticle-doped MgB2â^•Fe tapes. Journal of Applied Physics, 2007, 102, 013913.	1.1	37
74	Hydrogen embrittlement in metallic nanowires. Nature Communications, 2019, 10, 2004.	5.8	37
75	Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and Highâ€Efficiency Semitransparent Organic Photovoltaics. Solar Rrl, 2020, 4, 2000328.	3.1	36
76	Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. ACS Applied Materials & Interfaces, 2020, 12, 41696-41703.	4.0	36
77	Z-Shaped MEMS Thermal Actuators: Piezoresistive Self-Sensing and Preliminary Results for Feedback Control. Journal of Microelectromechanical Systems, 2012, 21, 596-604.	1.7	35
78	Flexible 1–3 Composite Ultrasound Transducers With Silver-Nanowire-Based Stretchable Electrodes. IEEE Transactions on Industrial Electronics, 2020, 67, 6955-6962.	5.2	35
79	A microelectromechanical system for thermomechanical testing of nanostructures. Applied Physics Letters, 2013, 103, .	1.5	34
80	In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires. Nano Letters, 2019, 19, 5327-5334.	4.5	34
81	Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires. ACS Nano, 2019, 13, 9082-9090.	7.3	33
82	Temperature control in thermal microactuators with applications to <i>in-situ</i> nanomechanical testing. Applied Physics Letters, 2013, 102, .	1.5	31
83	Simple geometric model to describe self-folding of polymer sheets. Physical Review E, 2014, 89, 042601.	0.8	30
84	A Novel Finger Kinematic Tracking Method Based on Skin-Like Wearable Strain Sensors. IEEE Sensors Journal, 2018, 18, 3010-3015.	2.4	30
85	Patterning of Metal Nanowire Networks: Methods and Applications. ACS Applied Materials & Interfaces, 2021, 13, 60736-60762.	4.0	30
86	Printed Strain Sensors for Onâ€Skin Electronics. Small Structures, 2022, 3, 2100131.	6.9	29
87	Achieving High-Resolution Electrohydrodynamic Printing of Nanowires on Elastomeric Substrates through Surface Modification. ACS Applied Electronic Materials, 2021, 3, 192-202.	2.0	28
88	High-Jcâ€^MgB2 Josephson junctions with operating temperature up to 40 K. Applied Physics Letters, 2010, 96, .	1.5	27
89	Controlling the self-folding of a polymer sheet using a local heater: the effect of the polymer–heater interface. Soft Matter, 2017, 13, 3863-3870.	1.2	27
90	Stress relaxation in carbon nanotube-based fibers for load-bearing applications. Carbon, 2013, 52, 347-355.	5.4	26

Үолд Zhu

#	Article	IF	CITATIONS
91	Friction and Shear Strength at the Nanowire–Substrate Interfaces. Nanoscale Research Letters, 2010, 5, 291-5.	3.1	25
92	Electrocardiogram of a Silver Nanowire Based Dry Electrode: Quantitative Comparison With the Standard Ag/AgCl Gel Electrode. IEEE Access, 2019, 7, 20789-20800.	2.6	25
93	In-situ TEM study of dislocation interaction with twin boundary and retraction in twinned metallic nanowires. Acta Materialia, 2020, 196, 304-312.	3.8	25
94	Object Shape and Surface Topology Recognition Using Tactile Feedback Evoked through Transcutaneous Nerve Stimulation. IEEE Transactions on Haptics, 2020, 13, 152-158.	1.8	24
95	Fast Thermal Actuators for Soft Robotics. Soft Robotics, 2022, 9, 1031-1039.	4.6	23
96	Reliability of capacitive RF MEMS switches at high and low temperatures. International Journal of RF and Microwave Computer-Aided Engineering, 2004, 14, 317-328.	0.8	22
97	Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20941-20946.	3.3	22
98	Equi-biaxial compressive strain in graphene: Grüneisen parameter and buckling ridges. 2D Materials, 2019, 6, 015026.	2.0	22
99	Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. Journal of Neural Engineering, 2020, 17, 016002.	1.8	22
100	Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	21
101	Evoked Haptic Sensation in the Hand With Concurrent Non-Invasive Nerve Stimulation. IEEE Transactions on Biomedical Engineering, 2019, 66, 2761-2767.	2.5	21
102	Nanoscale disorder in high critical field, carbon-doped MgB2 hybrid physical-chemical vapor deposition thin films. Applied Physics Letters, 2007, 91, 082513.	1.5	20
103	Analysis of Nonlinear Phenomena in a Thermal Micro-Actuator With a Built-In Thermal Position Sensor. IEEE Sensors Journal, 2012, 12, 1772-1784.	2.4	20
104	RF MEMS switches for smart antennas. Microsystem Technologies, 2015, 21, 487-495.	1.2	20
105	Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors. Nature Communications, 2022, 13, 2739.	5.8	20
106	An experimental/computational approach to identify moduli and residual stress in MEMS radio-frequency switches. Experimental Mechanics, 2003, 43, 309-316.	1.1	19
107	Evolution of Irradiationâ€Induced Vacancy Defects in Boron Nitride Nanotubes. Small, 2016, 12, 818-824.	5.2	19
108	Interfacial shear stress transfer at nanowire-polymer interfaces with van der Waals interactions and chemical bonding. Journal of the Mechanics and Physics of Solids, 2019, 127, 191-207.	2.3	19

#	Article	IF	CITATIONS
109	A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. ACS Applied Materials & Interfaces, 2021, 13, 59085-59091.	4.0	19
110	Pop-up assembly of 3D structures actuated by heat shrinkable polymers. Smart Materials and Structures, 2017, 26, 125011.	1.8	17
111	In Situ Nanomechanical Testing of Crystalline Nanowires in Electron Microscopes. Jom, 2016, 68, 84-93.	0.9	16
112	Piezoelectric Floating Element Shear Stress Sensor for the Wind Tunnel Flow Measurement. IEEE Transactions on Industrial Electronics, 2017, 64, 7304-7312.	5.2	16
113	Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes. ACS Applied Materials & amp; Interfaces, 2020, 12, 50675-50683.	4.0	16
114	Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. Journal of Neural Engineering, 2020, 17, 036020.	1.8	15
115	Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation. Scientific Reports, 2017, 7, 9145.	1.6	14
116	Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet. Smart Materials and Structures, 2018, 27, 055009.	1.8	14
117	Microelectromechanical Systems for Nanomechanical Testing: Electrostatic Actuation and Capacitive Sensing for High-Strain-Rate Testing. Experimental Mechanics, 2020, 60, 329-343.	1.1	14
118	Microstructure and tensile behaviour of pure titanium produced after high-energy shot peening. Materials Science and Technology, 2016, 32, 1323-1329.	0.8	13
119	Object Recognition via Evoked Sensory Feedback during Control of a Prosthetic Hand. IEEE Robotics and Automation Letters, 2022, 7, 207-214.	3.3	13
120	Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. Advanced Materials Technologies, 2022, 7, .	3.0	13
121	Soft wearable sensors for monitoring symptoms of COVID-19 and other respiratory diseases: a review. Progress in Biomedical Engineering, 2022, 4, 012001.	2.8	12
122	Printed Electronics: Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications (Adv. Mater. Technol. 5/2019). Advanced Materials Technologies, 2019, 4, 1970029.	3.0	11
123	Microelectromechanical Systems for Nanomechanical Testing: Displacement- and Force-Controlled Tensile Testing with Feedback Control. Experimental Mechanics, 2020, 60, 1005-1015.	1.1	11
124	Electro-Thermal Actuator for On-Chip Nanoscale Tensile Tests: Analytical Modelling and Multi-Physics Simulations. Sensor Letters, 2007, 5, 592-607.	0.4	11
125	<jats:formula formulatype="inline"><jats:tex notation="TeX">\${m MgB}_{2}{m MgO/MgB}_{2}\$</jats:tex></jats:formula> Josephson Junctions for High-Speed Circuits. IEEE Transactions on Applied Superconductivity, 2011, 21, 115-118.	1.1	10
126	Recycling of Nanowire Percolation Network for Sustainable Soft Electronics. Advanced Electronic Materials, 2021, 7, 2100588.	2.6	10

#	Article	IF	CITATIONS
127	A Microelectromechanical System for Nano-Scale Testing of One Dimensional Nanostructures. Sensor Letters, 2008, 6, 76-87.	0.4	10
128	Static and dynamic proprioceptive recognition through vibrotactile stimulation. Journal of Neural Engineering, 2021, 18, 046093.	1.8	8
129	Temperature-dependent material properties of Z-shaped MEMS thermal actuators made of single crystalline silicon. Journal of Micromechanics and Microengineering, 2013, 23, 125036.	1.5	7
130	Stretching nanowires on a stretchable substrate: A method towards facile fracture testing and elastic strain engineering. Extreme Mechanics Letters, 2020, 41, 101035.	2.0	7
131	Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 2022, 279, 114759.	3.1	7
132	Competition between shear localization and tensile detwinning in twinned nanowires. Physical Review Materials, 2020, 4, .	0.9	7
133	Closed-loop control of a prosthetic finger via evoked proprioceptive information. Journal of Neural Engineering, 2021, 18, 066029.	1.8	7
134	Stretchable Conductors: Nanomaterialâ€Enabled Stretchable Conductors: Strategies, Materials and Devices (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1479-1479.	11.1	6
135	Silver Nanowire Composite Electrode Enabling Highly Flexible, Robust Organic Photovoltaics. Solar Rrl, 2022, 6, .	3.1	6
136	Stiffness Perception using Transcutaneous Electrical Stimulation during Active and Passive Prosthetic Control. , 2020, 2020, 3909-3912.		5
137	A Flexible Piezo-Composite Ultrasound Blood Pressure Sensor with Silver Nanowire-based Stretchable Electrodes. , 2020, , .		5
138	Effect of electrode characteristics on electromyographic activity of the masseter muscle. Journal of Electromyography and Kinesiology, 2021, 56, 102492.	0.7	5
139	Novel wearable EMG sensors based on nanowire technology. , 2014, 2014, 1674-7.		4
140	Elastic drug delivery: could treatments be triggered by patient movement?. Nanomedicine, 2016, 11, 323-325.	1.7	4
141	Merged Haptic Sensation in the Hand during Concurrent Non-Invasive Proximal Nerve Stimulation. , 2018, 2018, 2186-2189.		4
142	Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors. Advanced Materials Interfaces, 2018, 5, 1801379.	1.9	4
143	Silver nanowire strain sensors for wearable body motion tracking. , 2015, , .		3
144	Silver nanowire based wearable sensors for multimodal sensing. , 2016, , .		3

#	Article	IF	CITATIONS
145	Drug Delivery: Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation (Adv.) Tj ETQq1	1 0,78431 11.1	Lჭ rgBT /O
146	Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and Graphene (on Cu). Journal of Electronic Materials, 2017, 46, 1010-1021.	1.0	3
147	Characterization and Modeling of Catalyst-free Carbon-Assisted Synthesis of ZnO Nanowires. Journal of Manufacturing Processes, 2018, 32, 438-444.	2.8	3
148	Evoked Tactile Feedback and Control Scheme on Functional Utility of Prosthetic Hand. IEEE Robotics and Automation Letters, 2022, 7, 1308-1315.	3.3	3
149	Shape-induced ferromagnetic ordering in a triangular array of magnetized disks. Applied Physics Letters, 2005, 87, 202504.	1.5	2
150	Nanoscale Testing of One-Dimensional Nanostructures. , 2008, , 280-304.		2
151	Shape Morphing: Origami/Kirigamiâ€Guided Morphing of Composite Sheets (Adv. Funct. Mater. 44/2018). Advanced Functional Materials, 2018, 28, 1870314.	7.8	2
152	In Situ Nano-thermo-mechanical Experiment Reveals Brittle to Ductile Transition in Si Nanowires. Microscopy and Microanalysis, 2020, 26, 3192-3194.	0.2	2
153	MEMS-based Material Testing Systems. , 2006, , 1-10.		2
154	Nanomaterials for soft wearable electronics. , 2022, , .		2
155	A Novel MEMS-based Nanoscale Material Testing System. , 0, , .		1
156	A Novel Bidirectional Z-Shaped Thermally Actuated RF MEMS Switch for Multiple-Beam Antenna Array. Advanced Materials Research, 0, 705, 264-269.	0.3	1
157	Multi-resonant AgNW/PDMS patch antenna for biaxial strain sensing. , 2015, , .		1
158	Hydration Sensing: A Wearable Hydration Sensor with Conformal Nanowire Electrodes (Adv.) Tj ETQq0 0 0 rgBT /C	yerlock 10	0 ₁ Tf 50 222
159	Atomic Layer Deposition: Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors (Adv. Mater. Interfaces 22/2018). Advanced Materials Interfaces, 2018, 5, 1870109.	1.9	1
160	A New Electrothermal Microactuator with Z-shaped Beams. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 209-213.	0.3	1
161	Wearable Bioimpedance Hydration Monitoring System using Conformable AgNW Electrodes. , 2021, , .		1
162	Emerging Wearable Sensors for Plant Health Monitoring (Adv. Funct. Mater. 52/2021). Advanced Functional Materials, 2021, 31, .	7.8	1

#	Article	IF	CITATIONS
163	Soft Dry Electrodes for Electrocardiogram with Conductive Silver Nanowires. Materials Research Society Symposia Proceedings, 2014, 1685, 54.	0.1	0
164	Anomalous Tensile Detwinning in Twinned Metallic Nanowires. Microscopy and Microanalysis, 2018, 24, 1824-1825.	0.2	0
165	Anelastic Behavior in Crystalline Nanowires. Microscopy and Microanalysis, 2018, 24, 1908-1909.	0.2	0
166	In Situ Thermomechanical Loading for TEM Studies of Nanocrystalline Alloys. Microscopy and Microanalysis, 2021, 27, 2420-2424.	0.2	0
167	Tensile detwinning in bi-twinned metallic nanowires. Microscopy and Microanalysis, 2021, 27, 1488-1490.	0.2	0
168	Interaction of dislocations with twinning boundary in bi-twinned metallic nanowires. Microscopy and Microanalysis, 2021, 27, 1960-1962.	0.2	0
169	Mechanical Properties of Nanowires. , 2022, , .		0