Marco Lauricella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245147/publications.pdf Version: 2024-02-01

MARCOLAURICEUA

#	Article	IF	CITATIONS
1	Electric field induced macroscopic cellular phase of nanoparticles. Soft Matter, 2022, 18, 1991-1996.	1.2	2
2	Capturing Free-Radical Polymerization by Synergetic <i>Ab Initio</i> Calculations and Topological Reactive Molecular Dynamics. Macromolecules, 2022, 55, 1474-1486.	2.2	3
3	Double Life of Methanol: Experimental Studies and Nonequilibrium Molecular-Dynamics Simulation of Methanol Effects on Methane-Hydrate Nucleation. Journal of Physical Chemistry C, 2022, 126, 6075-6081.	1.5	9
4	Stochastic Jetting and Dripping in Confined Soft Granular Flows. Physical Review Letters, 2022, 128, 128001.	2.9	9
5	LBcuda: A high-performance CUDA port of LBsoft for simulation of colloidal systems. Computer Physics Communications, 2022, 277, 108380.	3.0	6
6	Computational droplets: Where we stand and how far we can go. Europhysics Letters, 2022, 138, 67001.	0.7	2
7	The vortex-driven dynamics of droplets within droplets. Nature Communications, 2021, 12, 82.	5.8	26
8	Mesoscale modelling of droplets' self-assembly in microfluidic channels. Soft Matter, 2021, 17, 2374-2383.	1.2	11
9	Wet to dry self-transitions in dense emulsions: From order to disorder and back. Physical Review Fluids, 2021, 6, .	1.0	11
10	Optimized Modeling and Design of a PCM-Enhanced H2 Storage. Energies, 2021, 14, 1554.	1.6	17
11	Shear dynamics of polydisperse double emulsions. Physics of Fluids, 2021, 33, .	1.6	10
12	Lattice Boltzmann multicomponent model for direct-writing printing. Physics of Fluids, 2021, 33, .	1.6	6
13	Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels. Langmuir, 2021, 37, 9026-9033.	1.6	11
14	Microscale modelling of dielectrophoresis assembly processes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200407.	1.6	2
15	Tracking droplets in soft granular flows with deep learning techniques. European Physical Journal Plus, 2021, 136, 864.	1.2	8
16	A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200400.	1.6	10
17	Dynamics of polydisperse multiple emulsions in microfluidic channels. Physical Review E, 2021, 104, 065112.	0.8	1
18	Toward exascale design of soft mesoscale materials. Journal of Computational Science, 2020, 46, 101175.	1.5	6

MARCO LAURICELLA

#	Article	IF	CITATIONS
19	LBsoft: A parallel open-source software for simulation of colloidal systems. Computer Physics Communications, 2020, 256, 107455.	3.0	10
20	Shear dynamics of confined bijels. AIP Advances, 2020, 10, 095304.	0.6	8
21	Models of polymer solutions in electrified jets and solution blowing. Reviews of Modern Physics, 2020, 92, .	16.4	51
22	Multiparticle collision dynamics for fluid interfaces with near-contact interactions. Journal of Chemical Physics, 2020, 152, 144101.	1.2	4
23	A coupled lattice Boltzmann-Multiparticle collision method for multi-resolution hydrodynamics. Journal of Computational Science, 2020, 44, 101160.	1.5	1
24	A Multiresolution Mesoscale Approach for Microscale Hydrodynamics. Advanced Theory and Simulations, 2020, 3, 1900250.	1.3	2
25	Novel nonequilibrium steady states in multiple emulsions. Physics of Fluids, 2020, 32, .	1.6	20
26	Lattice Boltzmann simulations capture the multiscale physics of soft flowing crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190406.	1.6	6
27	Concentrated phase emulsion with multicore morphology under shear: A numerical study. Physical Review Fluids, 2020, 5, .	1.0	10
28	Acoustic-propagation properties of methane clathrate hydrates from non-equilibrium molecular dynamics. Journal of Chemical Physics, 2019, 151, 144505.	1.2	8
29	Microvorticity fluctuations affect the structure of thin fluid films. Physical Review E, 2019, 100, 042606.	0.8	2
30	Simulating blood rheology across scales: A hybrid LB-particle approach. International Journal of Modern Physics C, 2019, 30, 1941003.	0.8	2
31	Mesoscale modelling of near-contact interactions for complex flowing interfaces. Journal of Fluid Mechanics, 2019, 872, 327-347.	1.4	48
32	Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method. Physics of Fluids, 2019, 31, .	1.6	67
33	Mesoscale modelling of soft flowing crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180149.	1.6	16
34	Amplitude effects on seismic velocities: How low can we go?. Journal of Chemical Physics, 2019, 150, 084101.	1.2	1
35	Curvature dynamics and long-range effects on fluid–fluid interfaces with colloids. Soft Matter, 2019, 15, 2848-2862.	1.2	7
36	Jetting to dripping transition: Critical aspect ratio in step emulsifiers. Physics of Fluids, 2019, 31, .	1.6	25

MARCO LAURICELLA

#	Article	IF	CITATIONS
37	Ab initio accelerated molecular dynamics study of the hydride ligands in the ruthenium complex: Ru(H2)2H2(P(C5H9)3)2. Physical Chemistry Chemical Physics, 2019, 21, 25247-25257.	1.3	1
38	Disordered interfaces in soft fluids with suspended colloids. International Journal of Modern Physics C, 2019, 30, 1941004.	0.8	1
39	Towards Exascale Lattice Boltzmann computing. Computers and Fluids, 2019, 181, 107-115.	1.3	40
40	Modeling pattern formation in soft flowing crystals. Physical Review Fluids, 2019, 4, .	1.0	30
41	Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. Computers and Fluids, 2018, 167, 33-39.	1.3	33
42	Elastic Characterization of <i>S</i> - and <i>P</i> -Wave Velocities in Marinelike Silica: The Role of Nonequilibrium Molecular Dynamics. Journal of Physical Chemistry C, 2018, 122, 3006-3013.	1.5	2
43	Multicomponent Lattice Boltzmann Models for Biological Applications. , 2018, , 357-370.		1
44	Mechanistic modelling of drug release from multi-layer capsules. Computers in Biology and Medicine, 2018, 93, 149-157.	3.9	41
45	Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets. Physical Review E, 2018, 97, 033308.	0.8	19
46	Lattice propagators and Haldane-Wu fractional statistics. Europhysics Letters, 2018, 122, 10002.	0.7	0
47	Elucidating the mechanism of step emulsification. Physical Review Fluids, 2018, 3, .	1.0	27
48	Mesoscopic model for soft flowing systems with tunable viscosity ratio. Physical Review Fluids, 2018, 3, .	1.0	20
49	Mechanisms and Nucleation Rate of Methane Hydrate by Dynamical Nonequilibrium Molecular Dynamics. Journal of Physical Chemistry C, 2017, 121, 24223-24234.	1.5	30
50	Effects of orthogonal rotating electric fields on electrospinning process. Physics of Fluids, 2017, 29, .	1.6	20
51	Effects of nanoparticles on the dynamic morphology of electrified jets. Europhysics Letters, 2017, 119, 44001.	0.7	1
52	Dynamic mesh refinement for discrete models of jet electro-hydrodynamics. Journal of Computational Science, 2016, 17, 325-333.	1.5	12
53	Iontophoretic transdermal drug delivery: a multi-layered approach. Mathematical Medicine and Biology, 2016, 34, dqw017.	0.8	6
54	Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow. Journal of Physical Chemistry A, 2016, 120, 4884-4892.	1.1	15

MARCO LAURICELLA

#	Article	IF	CITATIONS
55	Structural and dynamical properties of methane clathrate hydrates from molecular dynamics: Comparison of atomistic and more coarse-grained potential models. Fluid Phase Equilibria, 2016, 413, 235-241.	1.4	8
56	Nonlinear Langevin model for the early-stage dynamics of electrospinning jets. Molecular Physics, 2015, 113, 2435-2441.	0.8	9
57	Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 2015, 11, 3424-3431.	1.2	29
58	Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation. Journal of Chemical Physics, 2015, 142, 244503.	1.2	33
59	JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning. Computer Physics Communications, 2015, 197, 227-238.	3.0	19
60	Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag. Mechanics Research Communications, 2015, 69, 97-102.	1.0	11
61	Massively parallel molecular dynamics simulation of formation of clathrate-hydrate precursors at planar water-methane interfaces: Insights into heterogeneous nucleation. Journal of Chemical Physics, 2014, 140, 204714.	1.2	56
62	Methane Clathrate Hydrate Nucleation Mechanism by Advanced Molecular Simulations. Journal of Physical Chemistry C, 2014, 118, 22847-22857.	1.5	87
63	Experimental and computational investigation of the group 11–group 2 diatomic molecules: First determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species. Journal of Chemical Physics, 2012, 136, 184306.	1.2	5