Steven P Gieseg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4244954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carotid Artery Plaque Calcifications: Lessons From Histopathology to Diagnostic Imaging. Stroke, 2022, 53, 290-297.	2.0	26
2	Interactive Image Segmentation of MARS Datasets Using Bag of Features. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 559-567.	3.7	0
3	Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT. IEEE Access, 2021, 9, 67201-67208.	4.2	2
4	Foam cell formation but not oxLDL cytotoxicity is inhibited by CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin. International Journal of Biochemistry and Cell Biology, 2021, 133, 105918.	2.8	5
5	Urinary neopterin and total neopterin measurements allow monitoring of oxidative stress and inflammation levels of knee and hip arthroplasty patients. PLoS ONE, 2021, 16, e0256072.	2.5	4
6	Pterins as diagnostic markers of exercise-induced stress: a systematic review. Journal of Science and Medicine in Sport, 2020, 23, 53-62.	1.3	10
7	Nucleoside transporters are critical to the uptake and antioxidant activity of 7,8-dihydroneopterin in monocytic cells. Free Radical Research, 2020, 54, 341-350.	3.3	6
8	Neopterin formation through radical scavenging of superoxide by the macrophage synthesised antioxidant 7,8-dihydroneopterin. Free Radical Biology and Medicine, 2020, 152, 142-151.	2.9	11
9	Oxidative stress and immune cell activation quantification in sepsis and non-sepsis critical care patients by neopterin/7,8-dihydroneopterin analysis. Pteridines, 2020, 31, 68-82.	0.5	4
10	Pterins as Diagnostic Markers of Mechanical and Impact-Induced Trauma: A Systematic Review. Journal of Clinical Medicine, 2019, 8, 1383.	2.4	5
11	Simultaneous analysis of neopterin, kynurenine and tryptophan by amine-HPLC shows minor oxidative stress from short-term exhaustion exercise. Pteridines, 2019, 30, 21-32.	0.5	8
12	Knee replacement surgery significantly elevates the urinary inflammatory biomarkers neopterin and 7,8-dihydroneopterin. Clinical Biochemistry, 2019, 63, 39-45.	1.9	8
13	MARS pre-clinical imaging: the benefits of small pixels and good energy data. , 2019, , .		3
14	Induced macrophage activation in live excised atherosclerotic plaque. Immunobiology, 2018, 223, 526-535.	1.9	18
15	First human imaging with MARS photon-counting CT. , 2018, , .		9
16	Neopterin, Inflammation, and Oxidative Stress: What Could We Be Missing?. Antioxidants, 2018, 7, 80.	5.1	61
17	Plasma levels of soluble VEGF receptor isoforms, circulating pterins and VEGF system SNPs as prognostic biomarkers in patients with acute coronary syndromes. BMC Cardiovascular Disorders, 2018, 18, 169.	1.7	12
18	No relationship exists between urinary NT-proBNP and GPS technology in professional rugby union. Journal of Science and Medicine in Sport, 2017, 20, 790-794.	1.3	5

STEVEN P GIESEG

#	Article	IF	CITATIONS
19	The physiological response to cold-water immersion following a mixed martial arts training session. Applied Physiology, Nutrition and Metabolism, 2017, 42, 529-536.	1.9	44
20	The effect of 1 week of repeated ischaemic leg preconditioning on simulated Keirin cycling performance: a randomised trial. BMJ Open Sport and Exercise Medicine, 2017, 3, e000229.	2.9	28
21	Effect of 7,8-dihydroneopterin mediated CD36 down regulation and oxidant scavenging on oxidised low-density lipoprotein induced cell death in human macrophages. International Journal of Biochemistry and Cell Biology, 2017, 87, 27-33.	2.8	14
22	Repetitive cryotherapy attenuates the <i>in vitro</i> and <i>in vivo</i> mononuclear cell activation response. Experimental Physiology, 2016, 101, 851-865.	2.0	20
23	Impactâ€induced muscle damage and urinary pterins in professional rugby: 7,8â€dihydroneopterin oxidation by myoglobin. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 329-337.	2.9	28
24	The physiological and mononuclear cell activation response to cryotherapy following a mixed martial arts contest: a pilot study. Pteridines, 2015, 26, 143-151.	0.5	12
25	Immunity, inflammatory and psychophysiological stress response during a competition of professional rugby union. Pteridines, 2015, 26, 153-160.	0.5	6
26	Neopterin and 7,8-dihydroneopterin are generated within atherosclerotic plaques. Pteridines, 2015, 26, 93-103.	0.5	10
27	Adsorption of chemically synthesized mussel adhesive peptide sequences containing DOPA on stainless steel. Journal of Peptide Science, 2015, 21, 630-635.	1.4	4
28	Effect of varied recovery interventions on markers of psychophysiological stress in professional rugby union. European Journal of Sport Science, 2015, 15, 543-549.	2.7	16
29	Positional demands of professional rugby. European Journal of Sport Science, 2015, 15, 480-487.	2.7	57
30	Oxidised low density lipoprotein causes human macrophage cell death through oxidant generation and inhibition of key catabolic enzymes. International Journal of Biochemistry and Cell Biology, 2015, 67, 34-42.	2.8	13
31	Urinary myoglobin quantification by high-performance liquid chromatography: An alternative measurement for exercise-induced muscle damage. Analytical Biochemistry, 2015, 491, 37-42.	2.4	19
32	Changes in acute biochemical markers of inflammatory and structural stress in rugby union. Journal of Sports Sciences, 2015, 33, 882-891.	2.0	49
33	Measurement of changes in urinary neopterin and total neopterin in body builders using SCX HPLC. Pteridines, 2014, 25, 53-63.	0.5	28
34	Intracellular glutathione protects human monocyte-derived macrophages from hypochlorite damage. Life Sciences, 2012, 90, 682-688.	4.3	20
35	7â€Ketocholesterol is Not Cytotoxic to U937 Cells When Incorporated into Acetylated Low Density Lipoprotein. Lipids, 2012, 47, 239-247.	1.7	14
36	HOCl causes necrotic cell death in human monocyte derived macrophages through calcium dependent calpain activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 420-429.	4.1	42

STEVEN P GIESEG

#	Article	IF	CITATIONS
37	Effects of Rested Harvesting on Muscle Metabolite Concentrations and Kâ€Values in Chinook Salmon (<i>Oncorhynchus tshawytscha)</i> â€,Fillets during Storage at 15 °C. Journal of Food Science, 2010, 75, C459-64.	3.1	16
38	Oxidant Production, oxLDL Uptake, and CD36 Levels in Human Monocyte–Derived Macrophages Are Downregulated by the Macrophage-Generated Antioxidant 7,8-Dihydroneopterin. Antioxidants and Redox Signaling, 2010, 13, 1525-1534.	5.4	24
39	Macrophage antioxidant protection within atherosclerotic plaques. Frontiers in Bioscience - Landmark, 2009, Volume, 1230.	3.0	30
40	Dissociation of neopterin and 7,8-dihydroneopterin from plasma components before HPLC analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 863, 167-171.	2.3	32
41	Inflammatory sites as a source of plasma neopterin: Measurement of high levels of neopterin and markers of oxidative stress in pus drained from human abscesses. Clinical Biochemistry, 2008, 41, 1078-1083.	1.9	23
42	Potential to inhibit growth of atherosclerotic plaque development through modulation of macrophage neopterin/7,8â€dihydroneopterin synthesis. British Journal of Pharmacology, 2008, 153, 627-635.	5.4	44
43	Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1095-1101.	4.1	16
44	Redistribution of metal ions to control low density lipoprotein oxidation in Ham's F10 medium. Free Radical Research, 2007, 41, 1109-1115.	3.3	2
45	Lipid oxidation predominates over protein hydroperoxide formation in human monocyte-derived macrophages exposed to aqueous peroxyl radicals. Free Radical Research, 2007, 41, 839-848.	3.3	21
46	Aqueous peroxyl radical exposure to THP-1 cells causes glutathione loss followed by protein oxidation and cell death without increased caspase-3 activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 945-953.	4.1	14
47	OxLDL induced cell death is inhibited by the macrophage synthesised pterin, 7,8-dihydroneopterin, in U937 cells but not THP-1 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 361-369.	4.1	32
48	Oxidized LDL triggers phosphatidylserine exposure in human monocyte cell lines by both caspase-dependent and -independent mechanisms. FEBS Letters, 2004, 578, 169-174.	2.8	19
49	Protein Hydroperoxides are a Major Product of Low Density Lipoprotein Oxidation During Copper, Peroxyl Radical and Macrophage-mediated Oxidation. Free Radical Research, 2003, 37, 983-991.	3.3	41
50	Inhibition of THP-1 cell-mediated low-density lipoprotein oxidation by the macrophage-synthesised pterin, 7,8-dihydroneopterin. Redox Report, 2003, 8, 113-115.	4.5	18
51	Inhibition of protein hydroperoxide formation by protein thiols. Redox Report, 2003, 8, 81-86.	4.5	20
52	Serum Protein-Bound 3,4-Dihydroxyphenylalanine and Related Products of Protein Oxidation and Chronic Hemodialysis. Renal Failure, 2003, 25, 997-1009.	2.1	15
53	Protein and thiol oxidation in cells exposed to peroxyl radicals is inhibited by the macrophage synthesised pterin 7,8-dihydroneopterin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1591, 139-145.	4.1	30
54	Protection of erythrocytes by the macrophage synthesized antioxidant 7,8 dihydroneopterin. Free Radical Research, 2001, 34, 123-136.	3.3	33

STEVEN P GIESEG

#	Article	IF	CITATIONS
55	Protection of U937 cells from free radical damage by the macrophage synthesized antioxidant 7,8-dihydroneopterin. Free Radical Research, 2001, 35, 311-318.	3.3	34
56	Peroxidation of proteins before lipids in U937 cells exposed to peroxyl radicals. Biochemical Journal, 2000, 350, 215.	3.7	37
57	Peroxidation of proteins before lipids in U937 cells exposed to peroxyl radicals. Biochemical Journal, 2000, 350, 215-218.	3.7	94
58	7,8 dihydroneopterin can protect cells from free radical mediated damage. Free Radical Biology and Medicine, 1998, 25, S32.	2.9	4
59	7,8 Dihydroneopterin Inhibits Low Density Lipoprotein Oxidation in Vitro. Evidence That This Macrophage Secreted Pteridine is an Anti-Oxidant. Free Radical Research, 1995, 23, 123-136.	3.3	55
60	Low density lipoprotein is saturable by proâ€oxidant copper. FEBS Letters, 1994, 343, 188-194.	2.8	183
61	Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry, 1993, 32, 4780-4786.	2.5	188
62	Reactive species and their accumulation on radical-damaged proteins. Trends in Biochemical Sciences, 1993, 18, 437-441.	7.5	222
63	Abnormal Development inArtemia: Defective emergence of the prenauplius with bicarbonate deficiency. The Journal of Experimental Zoology, 1987, 243, 225-232.	1.4	9