
## Michal Å prlÃ;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4244745/publications.pdf Version: 2024-02-01



MICHAL ÅDDLÄ:K

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Assessment of Hydrologic- and Flood-Induced Land Deformation in Data-Sparse Regions Using GRACE/GRACE-FO Data Assimilation. Remote Sensing, 2021, 13, 235.                              | 4.0  | 10        |
| 2  | On the use of spherical harmonic series inside the minimum Brillouin sphere: Theoretical review and evaluation by GRAIL and LOLA satellite data. Earth-Science Reviews, 2021, 222, 103739.  | 9.1  | 9         |
| 3  | On determination of the geoid from measured gradients of the Earth's gravity field potential.<br>Earth-Science Reviews, 2021, 221, 103773.                                                  | 9.1  | 4         |
| 4  | Spheroidal forward modelling of the gravitational fields of 1 Ceres and the Moon. Icarus, 2020, 335, 113412.                                                                                | 2.5  | 11        |
| 5  | Integral inversion of GRAIL inter-satellite gravitational accelerations for regional recovery of the lunar gravitational field. Advances in Space Research, 2020, 65, 630-649.              | 2.6  | 6         |
| 6  | Crustal density and global gravitational field estimation of the Moon from GRAIL and LOLA satellite<br>data. Planetary and Space Science, 2020, 192, 105032.                                | 1.7  | 5         |
| 7  | Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia. Hydrogeology Journal, 2020, 28, 1809-1825.                             | 2.1  | 28        |
| 8  | Downward continuation of gravitational field quantities to an irregular surface by spectral weighting. Journal of Geodesy, 2020, 94, 1.                                                     | 3.6  | 6         |
| 9  | Higher-order gravitational potential gradients for geoscientific applications. Earth-Science Reviews, 2019, 198, 102937.                                                                    | 9.1  | 12        |
| 10 | Quantifying water storage change and land subsidence induced by reservoir impoundment using GRACE, Landsat, and GPS data. Remote Sensing of Environment, 2019, 233, 111385.                 | 11.0 | 24        |
| 11 | Determination of ellipsoidal surface mass change from GRACE time-variable gravity data. Geophysical<br>Journal International, 2019, 219, 248-259.                                           | 2.4  | 16        |
| 12 | Spectral combination of spherical gravitational curvature boundary-value problems. Geophysical<br>Journal International, 2018, 214, 773-791.                                                | 2.4  | 10        |
| 13 | Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (~A2Akm) gravity fields of the Moon. Journal of Geodesy, 2018, 92, 847-862. | 3.6  | 17        |
| 14 | Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients. Surveys in Geophysics, 2018, 39, 245-270.                                                                   | 4.6  | 2         |
| 15 | Vertical and horizontal spheroidal boundary-value problems. Journal of Geodesy, 2018, 92, 811-826.                                                                                          | 3.6  | 2         |
| 16 | Effect of the Earth's inner structure on the gravity in definitions of height systems. Geophysical<br>Journal International, 2017, , ggx024.                                                | 2.4  | 2         |
| 17 | Integral formulas for transformation of potential field parameters inÂgeosciences. Earth-Science<br>Reviews, 2017, 164, 208-231.                                                            | 9.1  | 17        |
| 18 | Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components. Journal of Geodesy, 2017, 91, 167-194.                      | 3.6  | 13        |

Michal ÅprlÃik

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Regional gravity field modelling from GOCE observables. Advances in Space Research, 2017, 59, 114-127.                                                                                                                     | 2.6 | 6         |
| 20 | Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe. Geophysical Journal International, 2017, 209, 799-812.                                   | 2.4 | 12        |
| 21 | Spherical gravitational curvature boundary-value problem. Journal of Geodesy, 2016, 90, 727-739.                                                                                                                           | 3.6 | 24        |
| 22 | Local Recovery of Sub-Crustal Stress Due to Mantle Convection from Satellite-to-Satellite Tracking<br>Data. Acta Geophysica, 2016, 64, 904-929.                                                                            | 2.0 | 3         |
| 23 | Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients. Geophysical Journal International, 2016, 205, 89-98.                                                           | 2.4 | 12        |
| 24 | Non-singular expressions for the spherical harmonic synthesis of gravitational curvatures in a local north-oriented reference frame. Computers and Geosciences, 2016, 88, 152-162.                                         | 4.2 | 14        |
| 25 | Spherical Harmonic Analysis of Gravitational Curvatures and Its Implications for Future Satellite<br>Missions. Surveys in Geophysics, 2016, 37, 681-700.                                                                   | 4.6 | 18        |
| 26 | Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation. Journal of<br>Geodesy, 2016, 90, 65-80.                                                                                                | 3.6 | 23        |
| 27 | On the integral inversion of satellite-to-satellite velocity differences for local gravity field recovery:<br>a theoretical study. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 127-144.                        | 1.4 | 4         |
| 28 | Integral formulas for computing a third-order gravitational tensor from volumetric mass density,<br>disturbing gravitational potential, gravity anomaly and gravity disturbance. Journal of Geodesy, 2015,<br>89, 141-157. | 3.6 | 20        |
| 29 | Alternative validation method of satellite gradiometric data by integral transform of satellite altimetry data. Journal of Geodesy, 2015, 89, 757-773.                                                                     | 3.6 | 13        |
| 30 | Integral transformations of gradiometric data onto a GRACE type of observable. Journal of Geodesy, 2014, 88, 377-390.                                                                                                      | 3.6 | 10        |
| 31 | Iterative Spherical Downward Continuation Applied to Magnetic and Gravitational Data from Satellite. Surveys in Geophysics, 2014, 35, 941-958.                                                                             | 4.6 | 34        |
| 32 | Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data. Journal of Geodesy, 2014, 88, 643-657.                                                                 | 3.6 | 12        |
| 33 | Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. Journal of Geodesy, 2014, 88, 179-197.                                                               | 3.6 | 15        |
| 34 | Comparison of GOCE Global Gravity Field Models to Test Fields in Southern Norway. International<br>Association of Geodesy Symposia, 2014, , 59-65.                                                                         | 0.4 | 2         |
| 35 | A graphical user interface application for evaluation of the gravitational tensor components generated by a level ellipsoid of revolution. Computers and Geosciences, 2012, 46, 77-83.                                     | 4.2 | 12        |
| 36 | Validation of GOCE global gravity field models using terrestrial gravity data in Norway. Journal of<br>Geodetic Science, 2012, 2, 134-143.                                                                                 | 1.0 | 23        |

Michal ÅprlÃik

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the application of the coupled finite-infinite element method to geodetic boundary-value problem.<br>Studia Geophysica Et Geodaetica, 2011, 55, 479-487. | 0.5 | 7         |
| 38 | The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. Geological Society Special Publication, 2011, 357, 329-341.         | 1.3 | 46        |
| 39 | Generalized geoidal estimators for deterministic modifications of spherical Stokes' function.<br>Contributions To Geophysics and Geodesy, 2010, 40, 45-64.  | 0.6 | 4         |