
Sara Goldstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4244546/publications.pdf Version: 2024-02-01

SADA COLDSTEIN

#	Article	IF	CITATIONS
1	The chemistry and biological activities of N-acetylcysteine. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4117-4129.	2.4	620
2	Chemistry of Peroxynitrites as Compared to Peroxynitrates. Chemical Reviews, 2005, 105, 2457-2470.	47.7	354
3	Mechanism of the Nitrosation of Thiols and Amines by Oxygenated •NO Solutions:  the Nature of the Nitrosating Intermediates. Journal of the American Chemical Society, 1996, 118, 3419-3425.	13.7	212
4	Mechanism of Nitrite Formation by Nitrate Photolysis in Aqueous Solutions:  The Role of Peroxynitrite, Nitrogen Dioxide, and Hydroxyl Radical. Journal of the American Chemical Society, 2007, 129, 10597-10601.	13.7	210
5	Comments on the Mechanism of the "Fenton-Like―Reaction. Accounts of Chemical Research, 1999, 32, 547-550.	15.6	203
6	Photolysis of Aqueous H ₂ O ₂ :  Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors. Environmental Science & Technology, 2007, 41, 7486-7490.	10.0	192
7	Reactions of PHO and Carboxy-PHO with A-NO, A-NO2, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si17.gif"><mml:msubsup><mml:mi mathvariant="normal">O<mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mover accent="true"><mml:mo>.</mml:mo><mml:mo>Â⁻</mml:mo></mml:mover </mml:mi </mml:msubsup>.</mml:math 	3.4	176
8	Tyrosine Nitration by Simultaneous Generation of â‹NO and Oâ […] 2 under Physiological Conditions. Journal of Biological Chemistry, 2000, 275, 3031-3036.	3.4	170
9	Stimulation by Nitroxides of Catalase-like Activity of Hemeproteins. Journal of Biological Chemistry, 1996, 271, 26018-26025.	3.4	158
10	Formation of Peroxynitrate from the Reaction of Peroxynitrite with CO2:Â Evidence for Carbonate Radical Production. Journal of the American Chemical Society, 1998, 120, 3458-3463.	13.7	155
11	Kinetics and Mechanism of Hydroxyl Radical and OH-Adduct Radical Reactions with Nitroxides and with Their Hydroxylamines. Journal of the American Chemical Society, 2002, 124, 8719-8724.	13.7	152
12	The Role of Oxoammonium Cation in the SOD-Mimic Activity of Cyclic Nitroxides. Journal of the American Chemical Society, 2003, 125, 789-795.	13.7	131
13	Mannitol as an OH· Scavenger in Aqueous Solutions and in Biological Systems. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1984, 46, 725-729.	1.0	120
14	The Chemistry of Peroxynitrite: Implications for Biological Activity. Methods in Enzymology, 2008, 436, 49-61.	1.0	119
15	Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radical Biology and Medicine, 2008, 44, 2013-2018.	2.9	95
16	Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydroxylamine derived from cyclic nitroxides. Free Radical Biology and Medicine, 2005, 38, 317-324.	2.9	91
17	Structureâ^'Activity Relationship of Cyclic Nitroxides as SOD Mimics and Scavengers of Nitrogen Dioxide and Carbonate Radicals. Journal of Physical Chemistry A, 2006, 110, 3679-3685.	2.5	87
18	Kinetics and Mechanism of Peroxyl Radical Reactions with Nitroxides. Journal of Physical Chemistry A, 2007, 111, 1066-1072.	2.5	86

#	Article	IF	CITATIONS
19	Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radical Biology and Medicine, 2010, 48, 1559-1563.	2.9	71
20	The Effect of Bicarbonate on Oxidation by Peroxynitrite:Â Implication for Its Biological Activity. Inorganic Chemistry, 1997, 36, 5113-5117.	4.0	70
21	Reactivity of Peroxynitrite versus Simultaneous Generation of •NO and O2•- toward NADH. Chemical Research in Toxicology, 2000, 13, 736-741.	3.3	68
22	Effect of•NO on the Decomposition of Peroxynitrite: Reaction of N2O3with ONOO Chemical Research in Toxicology, 1999, 12, 132-136.	3.3	63
23	Carbonate Radical Ion Is the Only Observable Intermediate in the Reaction of Peroxynitrite with CO2. Chemical Research in Toxicology, 2001, 14, 1273-1276.	3.3	62
24	Reaction of Cyclic Nitroxides with Nitrogen Dioxide:  The Intermediacy of the Oxoammonium Cations. Journal of the American Chemical Society, 2003, 125, 8364-8370.	13.7	61
25	Reactions of Nitric Oxide, Peroxynitrite, and Carbonate Radicals with Nitroxides and Their Corresponding Oxoammonium Cations. Chemical Research in Toxicology, 2004, 17, 250-257.	3.3	59
26	When Do Metal Complexes Protect the Biological System from Superoxide Toxicity and When Do They Enhance It?. Free Radical Research Communications, 1986, 1, 157-161.	1.8	58
27	On the Distinction between Nitroxyl and Nitric Oxide Using Nitronyl Nitroxides. Journal of the American Chemical Society, 2010, 132, 8428-8432.	13.7	57
28	Oxidation of Peroxynitrite by Inorganic Radicals:  A Pulse Radiolysis Study. Journal of the American Chemical Society, 1998, 120, 5549-5554.	13.7	56
29	Mechanism of Decomposition of Peroxynitric Ion (O2NOO-):  Evidence for the Formation of O2•- and •NO2 Radicals. Inorganic Chemistry, 1998, 37, 3943-3947.	4.0	56
30	Kinetics of the Reaction between Nitroxide and Thiyl Radicals: Nitroxides as Antioxidants in the Presence of Thiols. Journal of Physical Chemistry A, 2008, 112, 8600-8605.	2.5	55
31	Viscosity Effects on the Reaction of Peroxynitrite with CO2:Â Evidence for Radical Formation in a Solvent Cage. Journal of the American Chemical Society, 1999, 121, 2444-2447.	13.7	53
32	Ligand Effects on the Kinetics of the Reversible Binding of NO to Selected Aminocarboxylato Complexes of Iron(II) in Aqueous Solution. European Journal of Inorganic Chemistry, 2001, 2001, 2317-2325.	2.0	53
33	Kinetics and Mechanism of•NO2Reacting with Various Oxidation States of Myoglobin. Journal of the American Chemical Society, 2004, 126, 15694-15701.	13.7	51
34	Kinetic properties of Cu,Zn-superoxide dismutase as a function of metal content—Order restored. Free Radical Biology and Medicine, 2006, 41, 937-941.	2.9	50
35	Reactivity of Peroxynitric Acid (O2NOOH):Â A Pulse Radiolysis Study. Inorganic Chemistry, 1997, 36, 4156-4162.	4.0	44
36	What is Unique About Superoxide Toxicity as Compared to Other Biological Reductants? — A Hypothesis. Free Radical Research Communications, 1988, 4, 231-236.	1.8	41

#	Article	IF	CITATIONS
37	Reaction of Organic Peroxyl Radicals with •NO2 and •NO in Aqueous Solution:  Intermediacy of Organic Peroxynitrate and Peroxynitrite Species. Journal of Physical Chemistry A, 2004, 108, 1719-1725.	2.5	41
38	Direct Determination of the Gibbs' Energy of Formation of Peroxynitrous Acid. Inorganic Chemistry, 2003, 42, 3796-3800.	4.0	33
39	Carbon dioxide-catalyzed peroxynitrite reactivity – The resilience of the radical mechanism after two decades of research. Free Radical Biology and Medicine, 2019, 135, 210-215.	2.9	33
40	One-Electron Oxidation of Acetohydroxamic Acid: The Intermediacy of Nitroxyl and Peroxynitrite. Journal of Physical Chemistry A, 2011, 115, 3022-3028.	2.5	29
41	Formation of Peroxynitrite from the Nitrosation of Hydrogen Peroxide by an Oxygenated Nitric Oxide Solution. Inorganic Chemistry, 1996, 35, 5935-5940.	4.0	27
42	Gibbs Energy of Formation of PeroxynitriteOrder Restored. Chemical Research in Toxicology, 2001, 14, 657-660.	3.3	26
43	The Uniqueness of Superoxide Dismutase (SOD) — Why Cannot Most Copper Compounds Substitute Sod <i>In vivo?</i> . Free Radical Research Communications, 1988, 4, 225-229.	1.8	25
44	Intra- and intermolecular oxidation of oxymyoglobin and oxyhemoglobin induced by hydroxyl and carbonate radicals. Free Radical Biology and Medicine, 2005, 39, 511-519.	2.9	25
45	Suberoylanilide hydroxamic acid radiosensitizes tumor hypoxic cells in vitro through the oxidation of nitroxyl to nitric oxide. Free Radical Biology and Medicine, 2014, 73, 291-298.	2.9	23
46	Nitrite Reduction to Nitrous Oxide and Ammonia by TiO ₂ Electrons in a Colloid Solution via Consecutive One-Electron Transfer Reactions. Journal of Physical Chemistry A, 2016, 120, 2307-2312.	2.5	21
47	Requirements for Sod Mimics Operating <i>In Vitro</i> to Work Also <i>In Vivo</i> . Free Radical Research Communications, 1991, 12, 167-171.	1.8	20
48	Polychromatic UV Photon Irradiance Measurements Using Chemical Actinometers Based on NO ₃ ^{â^'} and H ₂ O ₂ Excitation: Applications for Industrial Photoreactors. Environmental Science & Technology, 2008, 42, 3248-3253.	10.0	18
49	The mechanism underlying nitroxyl and nitric oxide formation from hydroxamic acids. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1560-1566.	2.4	18
50	The use of cyclic nitroxide radicals as HNO scavengers. Journal of Inorganic Biochemistry, 2013, 118, 155-161.	3.5	17
51	Comparison Between Different Assays for Superoxide Dismutase-Like Activity. Free Radical Research Communications, 1991, 12, 5-10.	1.8	15
52	Osmium tetroxide, used in the treatment of arthritic joints, is a fast mimic of superoxide dismutase. Free Radical Biology and Medicine, 2005, 38, 839-845.	2.9	15
53	Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2060-2069.	2.4	13
54	Direct Observation of Acyl Nitroso Compounds in Aqueous Solution and the Kinetics of Their Reactions with Amines, Thiols, and Hydroxamic Acids. Journal of Physical Chemistry A, 2018, 122, 7006-7013.	2.5	12

#	Article	IF	CITATIONS
55	Mechanism of Reduction of Bleomycin-Cu(II) by CO ^{â^'} ₂ and Oxidation of Bleomycin—Cu(I) by H ₂ O ₂ in the Absence and Presence of DNA. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1987, 51, 693-706.	1.0	11
56	Sod-Like Activity Studies of Cytokinin-Copper(II) Complexes. Free Radical Research Communications, 1991, 12, 173-177.	1.8	11
57	Formation of Peroxynitrite from the Oxidation of Hydrogen Peroxide by Nitrosonium Ion (NO+):Â A Pulse Radiolysis Study. Inorganic Chemistry, 1996, 35, 7735-7740.	4.0	11
58	The reaction of ONOO– with carbonyls: Estimation of the half-lives of ONOOC(O)O– and O2NOOC(O)O–Based on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 808-810.	2.3	11
59	One-Electron Reduction of 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin: A Pulse Radiolysis Study. Journal of Physical Chemistry A, 2011, 115, 8928-8932.	2.5	11
60	Redox Properties and Thiol Reactivity of Geldanamycin and its Analogues in Aqueous Solutions. Journal of Physical Chemistry B, 2012, 116, 6404-6410.	2.6	11
61	Nitric Oxide Reduction to Ammonia by TiO ₂ Electrons in Colloid Solution via Consecutive One-Electron Transfer Steps. Journal of Physical Chemistry A, 2015, 119, 2760-2769.	2.5	11
62	Evidence for Adduct Formation between ONOO- and CO2 from High-Pressure Pulse Radiolysis. Journal of Physical Chemistry A, 2000, 104, 9712-9714.	2.5	10
63	Kinetics of Paraquat and Copper Reactions with Nitroxides:  The Effects of Nitroxides on the Aerobic and Anoxic Toxicity of Paraquat. Chemical Research in Toxicology, 2002, 15, 686-691.	3.3	10
64	Nitrogen Dioxide Reaction with Nitroxide Radical Derived from Hydroxamic Acids: The Intermediacy of Acyl Nitroso and Nitroxyl (HNO). Journal of Physical Chemistry A, 2018, 122, 3747-3753.	2.5	10
65	Oxidation-Reduction Reactions of Iron Bleomycin in the Absence and Presence of DNA. Free Radical Research Communications, 1987, 2, 259-270.	1.8	9
66	Cyclic nitroxide radicals attenuate inflammation and Hyper-responsiveness in a mouse model of allergic asthma. Free Radical Biology and Medicine, 2015, 87, 148-156.	2.9	9
67	Nitroxides catalytically inhibit nitrite oxidation and heme inactivation induced by H 2 O 2 , nitrite and metmyoglobin or methemoglobin. Free Radical Biology and Medicine, 2016, 101, 491-499.	2.9	9
68	Mechanism of HRP-catalyzed nitrite oxidation by H 2 O 2 revisited: Effect of nitroxides on enzyme inactivation and its catalytic activity. Free Radical Biology and Medicine, 2017, 108, 832-839.	2.9	9
69	High-Pressure Pulse-Radiolysis Study of the Formation and Decomposition of Complexes with Ironâ^'Carbon σ Bonds: Mechanistic Comparison for Different Metal Centers. Inorganic Chemistry, 2001, 40, 4966-4970.	4.0	8
70	A Reinvestigation of the Reaction of Desferrioxamine with Superoxide Radicals. A Pulse Radiolysis Study. Free Radical Research Communications, 1990, 11, 231-240.	1.8	7
71	Mode of Action of Poly(vinylpyridine-N-oxide) in Preventing Silicosis:Â Effective Scavenging of Carbonate Anion Radical. Chemical Research in Toxicology, 2006, 19, 86-91.	3.3	7
72	Synergistic activity of acetohydroxamic acid on prokaryotes under oxidative stress: The role of reactive nitrogen species. Free Radical Biology and Medicine, 2014, 77, 291-297.	2.9	7

#	Article	IF	CITATIONS
73	Nitroxide radicals as research tools: Elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation―of metmyoglobin. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1409-1416.	2.4	7
74	3-Carbamoyl-proxyl nitroxide radicals attenuate bleomycin-induced pulmonary fibrosis in mice. Free Radical Biology and Medicine, 2021, 171, 135-142.	2.9	7
75	The Relative Efficiency of Radicals in Radiation Damage to Deoxyribose. Free Radical Research Communications, 1991, 12, 67-73.	1.8	6
76	Cyclic Hydroxylamines as Monitors of Peroxynitrite and Superoxide-Revisited. Antioxidants, 2022, 11, 40.	5.1	6
77	Hydroxylamines inhibit tyrosine oxidation and nitration: The role of their respective nitroxide radicals. Free Radical Biology and Medicine, 2020, 160, 837-844.	2.9	5
78	Determination of the Superoxide Dismutase-Like Activity of Cimetidine-Cu(II) Complexes. Free Radical Research Communications, 1991, 12, 205-210.	1.8	4
79	A kinetic study of the oxidation of hydroxamic acids by compounds I and II of horseradish peroxidase: Effect of transition metal ions. Journal of Coordination Chemistry, 2018, 71, 1728-1737.	2.2	4
80	Transition Metal Complexes as Sensitizers or Protectors Against O ₂ -Toxicity. Free Radical Research Communications, 1989, 6, 167-169.	1.8	3
81	Mechanisms of Reactions of•NO with Complexes with Metalâ^'Carbon σ-Bonds and with Aliphatic Radicals. Inorganic Chemistry, 1997, 36, 2893-2897.	4.0	3
82	The nitroxide/antioxidant 3-carbamoyl proxyl attenuates disease severity in murine models of severe asthma. Free Radical Biology and Medicine, 2021, 177, 181-188.	2.9	3
83	Comment on "Mechanism of Pt ^{IV} Sonochemical Reduction in Formic Acid Media and Pure Water― Chemistry - A European Journal, 2013, 19, 17210-17212.	3.3	2
84	Oxidation Mechanism of Hydroxamic Acids Forming HNO and NO. Advances in Inorganic Chemistry, 2015, 67, 315-333.	1.0	2
85	Studying mechanism of radical reactions: From radiation to nitroxides as research tools. Radiation Physics and Chemistry, 2018, 143, 14-19.	2.8	2
86	Mechanistic insight into the catalytic inhibition by nitroxides of tyrosine oxidation and nitration. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129403.	2.4	1
87	Effect of Sorbic Alcohol on the Radiolysis of Aromatic Compounds in Aqueous Solution. Journal of Physical Chemistry A, 2004, 108, 3416-3420.	2.5	0
88	Redox Properties of Benzoquinone Ansamycins in Aqueous Solutions. Israel Journal of Chemistry, 2014, 54, 316-320.	2.3	0