Xinyu Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4244464/publications.pdf

Version: 2024-02-01

		147726	206029
153	3,161	31	48
papers	citations	h-index	g-index
152	150	152	1205
153	153	153	1295
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Study of a delayed mosquito population suppression model with stage and sex structure. Journal of Applied Mathematics and Computing, 2023, 69, 89-111.	1.2	6
2	Impact of the impulsive releases and Allee effect on the dispersal behavior of the wild mosquitoes. Journal of Applied Mathematics and Computing, 2022, 68, 1527-1544.	1.2	4
3	Dynamics of a guanaco–sheep competitive system with unilateral and bilateral control. Nonlinear Dynamics, 2022, 107, 3111-3126.	2.7	4
4	Control Strategies for a Tumor-Immune System with Impulsive Drug Delivery under a Random Environment. Acta Mathematica Scientia, 2022, 42, 1141-1159.	0.5	4
5	3D stem model construction with geometry consistency using terrestrial laser scanning data. International Journal of Remote Sensing, 2021, 42, 714-737.	1.3	8
6	Impulsive release strategies of sterile mosquitos for optimal control of wild population. Journal of Biological Dynamics, 2021, 15, 151-176.	0.8	9
7	Dynamics of bilateral control system with state feedback for price adjustment strategy. International Journal of Biomathematics, 2021, 14, 2150031.	1.5	6
8	Comparison of Numerical Calculation Methods for Stem Diameter Retrieval Using Terrestrial Laser Data. Remote Sensing, 2021, 13, 1780.	1.8	5
9	Study of the sterile insect release technique for a two-sex mosquito population model. Mathematical Biosciences and Engineering, 2021, 18, 1314-1339.	1.0	8
10	Dynamical analysis of a two-species competitive system with state feedback impulsive control. International Journal of Biomathematics, 2020, 13, 2050007.	1.5	14
11	Dynamics of Unilateral and Bilateral Control Systems with State Feedback for Renewable Resource Management. Complexity, 2020, 2020, 1-16.	0.9	4
12	Fractional modeling and control in a delayed predator-prey system: extended feedback scheme. Advances in Difference Equations, 2020, 2020, .	3.5	1
13	Maximum likelihood estimation of nonlinear mixed-effects models with crossed random effects by combining first-order conditional linearization and sequential quadratic programming. International Journal of Biomathematics, 2019, 12, 1950040.	1.5	2
14	Global dynamics of a cholera model with age structures and multiple transmission modes. International Journal of Biomathematics, 2019, 12, 1950051.	1.5	5
15	Analysis of a negative binomial host–parasitoid model with two maturation delays and impulsive resource input. Journal of Biological Dynamics, 2019, 13, 245-268.	0.8	0
16	Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System. Complexity, 2019, 2019, 1-13.	0.9	3
17	Dynamical analysis of an integrated pest management predator–prey model with weak Allee effect. Journal of Biological Dynamics, 2019, 13, 218-244.	0.8	10
18	Comparing independent climate-sensitive models of above ground biomass and diameter growth with their compatible simultaneous model system for three larch species in China. International Journal of Biomathematics, 2019, 12, 1950053.	1.5	7

#	Article	IF	CITATIONS
19	Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 6279-6295.	0.5	7
20	Finite-time control of plasma glucose in insulin therapies for diabetes. Advances in Difference Equations, 2018, 2018, .	3.5	3
21	Dynamical analysis of a pest management Leslie–Gower model with ratio-dependent functional response. Nonlinear Dynamics, 2018, 93, 705-720.	2.7	18
22	A non-monotone inexact non-interior continuation method based on a parametric smoothing function for LWCP. International Journal of Computer Mathematics, 2018, 95, 739-751.	1.0	4
23	Global analysis of an epidemic model with vaccination. Journal of Applied Mathematics and Computing, 2018, 57, 605-628.	1.2	26
24	Numerical study of a smoothing algorithm for the complementarity system over the second-order cone. Computational and Applied Mathematics, 2018, 37, 2845-2861.	1.3	3
25	Modeling, Analysis and Bifurcation Control of a Delayed Fractional-Order Predator–Prey Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850117.	0.7	30
26	Development of a System of Compatible Individual Tree Diameter and Aboveground Biomass Prediction Models Using Error-In-Variable Regression and Airborne LiDAR Data. Remote Sensing, 2018, 10, 325.	1.8	30
27	An age-structured epidemic model with waning immunity and general nonlinear incidence rate. International Journal of Biomathematics, $2018,11,1850069$.	1.5	8
28	Modeling impulsive resource inputs in host–parasitoid interactions with time delays. International Journal of Biomathematics, 2018, 11, 1850064.	1.5	2
29	Ageâ€Structured Withinâ€Host HIV Dynamics with Multiple Target Cells. Studies in Applied Mathematics, 2017, 138, 43-76.	1.1	22
30	Modelling and analysis of impulsive releases of sterile mosquitoes. Journal of Biological Dynamics, 2017, 11, 147-171.	0.8	45
31	A kind of non-traditional biomanipulation model with constant releasing fish. Mathematical Methods in the Applied Sciences, 2017, 40, 4727.	1.2	3
32	Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China. Annals of Forest Science, 2017, 74, 1.	0.8	31
33	Dynamics of virus infection models with densityâ€dependent diffusion and Beddington–DeAngelis functional response. Mathematical Methods in the Applied Sciences, 2017, 40, 5593-5612.	1.2	3
34	Optimal control of phytoplankton–fish model with the impulsive feedback control. Nonlinear Dynamics, 2017, 88, 2003-2011.	2.7	13
35	Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy. Journal of Theoretical Biology, 2017, 416, 16-27.	0.8	20
36	Stability of a convex order one periodic solution of unilateral asymptotic type. Nonlinear Dynamics, 2017, 90, 83-93.	2.7	5

#	Article	IF	Citations
37	Dynamics of virus infection models with density-dependent diffusion. Computers and Mathematics With Applications, 2017, 74, 2403-2422.	1.4	11
38	Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control. International Journal of Biomathematics, 2017, 10, 1750093.	1.5	14
39	Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. Journal of Biological Dynamics, 2017, 11, 455-483.	0.8	7 5
40	Global properties for an age-structured within-host model with Crowley–Martin functional response. International Journal of Biomathematics, 2017, 10, 1750030.	1.5	5
41	Construction of Closed, Global Convexity and <i>G</i> Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29, 2216.	0.2	2
42	Developing an Improved Parameter Estimation Method for the Segmented Taper Equation through Combination of Constrained Two-Dimensional Optimum Seeking and Least Square Regression. Forests, 2016, 7, 194.	0.9	5
43	Precise Measurement of Stem Diameter by Simulating the Path of Diameter Tape from Terrestrial Laser Scanning Data. Remote Sensing, 2016, 8, 717.	1.8	19
44	Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations. Trees - Structure and Function, 2016, 30, 839-857.	0.9	42
45	Cost-effectiveness analysis of optimal strategy for tumor treatment. Chaos, Solitons and Fractals, 2016, 87, 293-301.	2.5	22
46	Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes. Bulletin of Mathematical Biology, 2016, 78, 322-349.	0.9	25
47	Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death. Mathematics and Computers in Simulation, 2016, 124, 87-103.	2.4	11
48	A within-host virus model with multiple infected stages under time-varying environments. Applied Mathematics and Computation, 2015, 266, 119-134.	1.4	3
49	Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property. Applied Mathematics and Computation, 2015, 271, 905-922.	1.4	27
50	Geometric properties of solution of a cylindrical dynamic system with impulsive state feedback control. Nonlinear Analysis: Hybrid Systems, 2015, 15, 98-111.	2.1	19
51	Analysis of an SEIR Epidemic Model with Saturated Incidence and Saturated Treatment Function. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	36
52	Permanence and Extinction for a Nonautonomous Malaria Transmission Model with Distributed Time Delay. Journal of Applied Mathematics, 2014, 2014, 1-15.	0.4	1
53	Periodic Solutions and Homoclinic Bifurcations of Two Predator-Prey Systems with Nonmonotonic Functional Response and Impulsive Harvesting. Journal of Applied Mathematics, 2014, 2014, 1-11.	0.4	2
54	Developing, testing and application of rodent population dynamics and capture models based on an adjusted Leslie matrix-based population approach. International Journal of Biomathematics, 2014, 07, 1450024.	1.5	1

#	Article	IF	CITATIONS
55	Modeling and qualitative analysis of diabetes therapies with state feedback control. International Journal of Biomathematics, 2014, 07, 1450035.	1.5	11
56	Modeling Impulsive Insulin Delivery in Insulin Pump with Time Delays. SIAM Journal on Applied Mathematics, 2014, 74, 1763-1785.	0.8	24
57	Qualitative analysis of a korean pine forest model with impulsive thinning measure. Applied Mathematics and Computation, 2014, 234, 203-213.	1.4	17
58	Periodic solutions and homoclinic bifurcation of a predator–prey system with two types of harvesting. Nonlinear Dynamics, 2013, 73, 815-826.	2.7	24
59	A class of delayed virus dynamics models with multiple target cells. Computational and Applied Mathematics, 2013, 32, 211-229.	1.3	6
60	A delayed Lotka–Volterra model with birth pulse and impulsive effect at different moment on the prey. Applied Mathematics and Computation, 2013, 219, 10263-10270.	1.4	13
61	DYNAMICS OF A NON-AUTONOMOUS HIV-1 INFECTION MODEL WITH DELAYS. International Journal of Biomathematics, 2013, 06, 1350030.	1.5	6
62	Modeling Impulsive Injections of Insulin: Towards Artificial Pancreas. SIAM Journal on Applied Mathematics, 2012, 72, 1524-1548.	0.8	97
63	Global properties of a delayed HIV infection model with CTL immune response. Applied Mathematics and Computation, 2012, 218, 9405-9414.	1.4	54
64	Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control. Nonlinear Dynamics, 2012, 67, 629-640.	2.7	14
65	Dynamical behavior of a pest management model with impulsive effect and nonlinear incidence rate. Computational and Applied Mathematics, 2011, 30, 381-398.	1.0	4
66	Analysis of pest-epidemic model byÂreleasing diseased pest withÂimpulsive transmission. Nonlinear Dynamics, 2011, 65, 175-185.	2.7	16
67	Global stability of a virus dynamics model withÂBeddington–DeAngelis incidence rate andÂCTLÂimmuneÂresponse. Nonlinear Dynamics, 2011, 66, 825-830.	2.7	51
68	The domain of attraction for the endemic equilibrium of an SIRS epidemic model. Mathematics and Computers in Simulation, 2011, 81, 1697-1706.	2.4	12
69	Dynamics analysis of a delayed viral infection model with immune impairment. Applied Mathematical Modelling, 2011, 35, 4877-4885.	2.2	42
70	Effect of prey refuge on a harvested predator–prey model with generalized functional response. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1052-1059.	1.7	44
71	Analysis of a stage-structured predator-prey model with Crowley-Martin function. Journal of Applied Mathematics and Computing, 2011, 36, 459-472.	1.2	53
72	Stability and boundedness criteria of nonlinear impulsive systems employing perturbing Lyapunov functions. Applied Mathematics and Computation, 2011, 217, 10166-10174.	1.4	9

#	Article	IF	Citations
73	Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear incidence rate. Applied Mathematical Modelling, 2011, 35, 4865-4876.	2.2	5
74	Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response. Journal of Mathematical Analysis and Applications, 2011, 373, 345-355.	0.5	45
75	Stability and boundedness of nonlinear impulsive systems in terms of two measures via perturbing Lyapunov functions. Journal of Mathematical Analysis and Applications, 2011, 375, 276-283.	0.5	7
76	Feasibility of time-limited control of a competition system with impulsive harvest. Nonlinear Analysis: Real World Applications, 2010, 11, 163-171.	0.9	4
77	Dynamical behavior of a delay virus dynamics model with CTL immune response. Nonlinear Analysis: Real World Applications, 2010, 11, 1795-1809.	0.9	71
78	Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune response. Journal of Applied Mathematics and Computing, 2010, 33, 251-265.	1.2	20
79	Dynamical behavior for anÂeco-epidemiological model withÂdiscrete andÂdistributed delay. Journal of Applied Mathematics and Computing, 2010, 33, 305-325.	1.2	6
80	A modified Leslie–Gower predator–prey model withÂprey infection. Journal of Applied Mathematics and Computing, 2010, 33, 471-487.	1.2	30
81	A delayed HIV-1 infection model withÂBeddington–DeAngelis functional response. Nonlinear Dynamics, 2010, 62, 67-72.	2.7	44
82	Properties of stability and Hopf bifurcation for a HIV infection model with time delay. Applied Mathematical Modelling, 2010, 34, 1511-1523.	2.2	38
83	Mathematical models of restoration and control of a single species with Allee effect. Applied Mathematical Modelling, 2010, 34, 3264-3272.	2.2	9
84	Study on the stability of nonlinear differential equations with initial time difference. Nonlinear Analysis: Real World Applications, 2010, 11, 1304-1311.	0.9	7
85	Analysis of an impulsive pest management SEI model with nonlinear incidence rate. Computational and Applied Mathematics, 2010, 29, .	1.0	5
86	Dynamical Properties of a Delay Prey-Predator Model with Disease in the Prey Species Only. Discrete Dynamics in Nature and Society, 2010, 2010, 1-16.	0.5	4
87	Asymptotic behaviour of the non-autonomous competing two-species Lotka–Volterra models with impulsive effect. Journal of Biological Dynamics, 2009, 3, 58-72.	0.8	1
88	A predator-prey system with two impulses on the diseased prey and a Beddington-DeAngelis response. Mathematical Methods in the Applied Sciences, 2009, 33, n/a-n/a.	1.2	2
89	A delay differential equation model of HIV infection ofÂCD4+ T-cells with cure rate. Journal of Applied Mathematics and Computing, 2009, 31, 51-70.	1.2	6
90	The dynamics of an eco-epidemiological model with distributed delay. Nonlinear Analysis: Hybrid Systems, 2009, 3, 685-699.	2.1	10

#	Article	IF	Citations
91	Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy. Nonlinear Analysis: Real World Applications, 2009, 10, 2335-2345.	0.9	31
92	The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response. Chaos, Solitons and Fractals, 2009, 39, 2282-2293.	2.5	18
93	Dynamic analysis of a kind of species control model concerning impulsively releasing pathogen and infective predator. Chaos, Solitons and Fractals, 2009, 42, 1326-1336.	2.5	1
94	Stability and Hopf bifurcation on a model for HIV infection of CD4+ T cells with delay. Chaos, Solitons and Fractals, 2009, 42, 1838-1844.	2.5	6
95	Extinction and permanence of chemostat model with pulsed input in a polluted environment. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1737-1745.	1.7	39
96	Analysis of pulse vaccination strategy in SIRVS epidemic model. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2747-2756.	1.7	8
97	Pulse vaccination on SEIR epidemic model with nonlinear incidence rate. Applied Mathematics and Computation, 2009, 210, 398-404.	1.4	23
98	Global attractivity and permanence of a delayed SVEIR epidemic model with pulse vaccination and saturation incidence. Applied Mathematics and Computation, 2009, 213, 312-321.	1.4	17
99	Dynamical behavior of a virus dynamics model with CTL immune response. Applied Mathematics and Computation, 2009, 213, 329-347.	1.4	19
100	Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Applied Mathematics and Computation, 2009, 214, 381-390.	1.4	65
101	Mathematical model for the control of a pest population with impulsive perturbations on diseased pest. Applied Mathematical Modelling, 2009, 33, 3099-3106.	2.2	19
102	Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay. Journal of Computational and Applied Mathematics, 2009, 229, 302-312.	1.1	26
103	A stage-structured predator–prey model with disturbing pulse and time delays. Applied Mathematical Modelling, 2009, 33, 211-223.	2.2	35
104	Analysis of a stage structured predator–prey Gompertz model with disturbing pulse and delay. Applied Mathematical Modelling, 2009, 33, 4231-4240.	2.2	8
105	ANALYSIS OF A STAGE-STRUCTURED PREDATOR-PREY SYSTEM WITH IMPULSIVE PERTURBATIONS AND TIME DELAYS. Journal of the Korean Mathematical Society, 2009, 46, 71-82.	0.4	2
106	ANALYSIS OF A DELAY PREY-PREDATOR MODEL WITH DISEASE IN THE PREY SPECIES ONLY. Journal of the Korean Mathematical Society, 2009, 46, 713-731.	0.4	23
107	Strict practical stability of nonlinear impulsive systems by employing two Lyapunov-like functions. Nonlinear Analysis: Real World Applications, 2008, 9, 2262-2269.	0.9	9
108	Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate. Mathematics and Computers in Simulation, 2008, 79, 500-510.	2.4	41

#	Article	IF	CITATIONS
109	A differential equation model of HIV infection of CD4+ T-cells with cure rate. Journal of Mathematical Analysis and Applications, 2008, 342, 1342-1355.	0.5	74
110	Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay. Applied Mathematics and Computation, 2008, 196, 129-136.	1.4	36
111	Analysis of stability and Hopf bifurcation for an HIV infection model with time delay. Applied Mathematics and Computation, 2008, 199, 23-38.	1.4	29
112	Practical stability of nonlinear differential equation with initial time difference. Applied Mathematics and Computation, 2008, 203, 157-162.	1.4	18
113	Dynamics of a predator-prey system with pulses. Applied Mathematics and Computation, 2008, 204, 269-280.	1.4	7
114	Mathematical models for the control of a pest population by infected pest. Computers and Mathematics With Applications, 2008, 56, 266-278.	1.4	40
115	Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells. Chaos, Solitons and Fractals, 2008, 38, 447-460.	2.5	23
116	An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. Chaos, Solitons and Fractals, 2008, 36, 1320-1331.	2.5	39
117	Bifurcation and complex dynamics of a two-prey two-predator system concerning periodic biological and chemical control. Chaos, Solitons and Fractals, 2008, 37, 424-437.	2.5	7
118	Dynamic behaviors of the periodic predator–prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Nonlinear Analysis: Real World Applications, 2008, 9, 64-79.	0.9	94
119	DYNAMIC BEHAVIORS OF A KIND OF PREDATOR–PREY SYSTEM WITH IVLEV'S AND BEDDINGTON–DEANGELIS FUNCTIONAL RESPONSE AND IMPULSIVE RELEASE. Stochastics and Dynamics, 2008, 08, 667-681.	5'0.6	O
120	MODELING AND ANALYSIS OF A HARVESTING FISHERY MODEL IN A TWO-PATCH ENVIRONMENT. International Journal of Biomathematics, 2008, 01, 287-298.	1.5	8
121	GLOBAL STABILITY OF A STAGE-STRUCTURED PREDATOR-PREY SYSTEM. International Journal of Biomathematics, 2008, 01, 313-326.	1.5	19
122	Time-Limited Management Strategies of a Single-Species With Allee Effect. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.2	2
123	Permanence and Stability of an Age-Structured Prey-Predator System with Delays. Discrete Dynamics in Nature and Society, 2007, 2007, 1-15.	0.5	3
124	On the Study of Chemostat Model with Pulsed Input in a Polluted Environment. Discrete Dynamics in Nature and Society, 2007, 2007, 1-12.	0.5	5
125	GLOBAL PROPERTIES OF A MODEL OF IMMUNE EFFECTOR RESPONSES TO VIRAL INFECTIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2007, 10, 495-503.	0.9	7
126	Permanence and stability of a predator–prey system with stage structure for predator. Journal of Computational and Applied Mathematics, 2007, 201, 356-366.	1.1	32

#	Article	IF	Citations
127	A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic inputa [*] †. Chaos, Solitons and Fractals, 2007, 32, 1419-1428.	2.5	12
128	Dynamic complexities of a Holling II two-prey one-predator system with impulsive effecta *†. Chaos, Solitons and Fractals, 2007, 33, 463-478.	2.5	41
129	Global stability and periodic solution of a model for HIV infection of CD4+ T cells. Applied Mathematics and Computation, 2007, 189, 1331-1340.	1.4	27
130	Bifurcation and complexity in a ratio-dependent predator-prey chemostat with pulsed input. Applied Mathematics, 2007, 22, 379-387.	0.6	2
131	Analysis of competitive chemostat models with the Beddington–DeAngelis functional response and impulsive effect. Applied Mathematical Modelling, 2007, 31, 2299-2312.	2.2	17
132	Global stability and periodic solution of the viral dynamics. Journal of Mathematical Analysis and Applications, 2007, 329, 281-297.	0.5	188
133	EXTINCTION AND PERMANENCE OF A KIND OF PEST-PREDATOR MODELS WITH IMPULSIVE EFFECT AND INFINITE DELAY. Journal of the Korean Mathematical Society, 2007, 44, 327-342.	0.4	11
134	Stability analysis of a ratio-dependent predator-prey system with diffusion and stage structure. International Journal of Mathematics and Mathematical Sciences, 2006, 2006, 1-20.	0.3	2
135	Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input. Discrete Dynamics in Nature and Society, 2006, 2006, 1-14.	0.5	2
136	Global stability and periodic solution of a model for HTLV-I infection and ATL progression. Applied Mathematics and Computation, 2006, 180, 401-410.	1.4	14
137	Extinction and permanence of a two-prey two-predator system with impulsive on the predator. Chaos, Solitons and Fractals, 2006, 29, 1121-1136.	2.5	11
138	The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. Journal of Theoretical Biology, 2006, 242, 683-698.	0.8	42
139	ANALYSIS OF A MODEL OF PLASMID-BEARING, PLASMID-FREE COMPETITION IN A PULSED CHEMOSTAT. International Journal of Modeling, Simulation, and Scientific Computing, 2006, 09, 263-276.	0.9	3
140	ANALYSIS OF A CHEMOSTAT MODEL WITH PULSED INPUT. Journal of Biological Systems, 2006, 14, 583-598.	0.5	1
141	A DELAY-DIFFERENTIAL EQUATION MODEL OF HIV INFECTION OF CD4+ T-CELLS. Journal of the Korean Mathematical Society, 2005, 42, 1071-1086.	0.4	39
142	Sufficient and necessary condition for the permanence of periodic predator-prey system. International Journal of Mathematics and Mathematical Sciences, 2004, 2004, 2307-2323.	0.3	0
143	Permanence of predator-prey system with stage structure. Discrete and Continuous Dynamical Systems - Series B, 2004, 4, 547-554.	0.5	38
144	Ratio-dependent predator-prey system with stage structure for prey. Discrete and Continuous Dynamical Systems - Series B, 2004, 4, 747-758.	0.5	22

#	Article	IF	CITATIONS
145	Predator-prey system with stage structure and delay. Applied Mathematics, 2003, 18, 143-150.	0.6	3
146	Uniform persistence and global attractivity for nonautonomous competitive systems with nonlinear dispersion and delays. Applied Mathematics and Computation, 2003, 146, 273-288.	1.4	4
147	The Stage-structured Predator-Prey System with Delay and Harvesting. Applicable Analysis, 2002, 81, 1127-1142.	0.6	12
148	Modelling and analysis of a single-species system with stage structure and harvesting. Mathematical and Computer Modelling, 2002, 36, 67-82.	2.0	40
149	Optimal harvesting and stability for a two-species competitive system with stage structure. Mathematical Biosciences, 2001, 170, 173-186.	0.9	213
150	Conditions for Global Attractivity of n-Patches Predator–Prey Dispersion-Delay Models. Journal of Mathematical Analysis and Applications, 2001, 253, 1-15.	0.5	23
151	Harmless delays and global attractivity for nonautonomous predator-prey system with dispersion. Computers and Mathematics With Applications, 2000, 39, 33-42.	1.4	9
152	Persistence and global stability for nonautonomous predator-prey system with diffusion and time delay. Computers and Mathematics With Applications, 1998, 35, 33-40.	1.4	48
153	Kinetic modeling and numerical simulations to predict patient-specific responses to radiotherapy. International Journal of Biomathematics, 0, , 2150083.	1.5	0