
Jaeseong Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advancing the Adverse Outcome Pathway for PPARÎ ³ Inactivation Leading to Pulmonary Fibrosis Using Bradford-Hill Consideration and the Comparative Toxicogenomics Database. Chemical Research in Toxicology, 2022, 35, 233-243.	3.3	5
2	Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications. Environmental Science & Technology, 2022, 56, 7532-7543.	10.0	34
3	Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere, 2021, 262, 128330.	8.2	91
4	Identification of toxicity pathway of diesel particulate matter using AOP of PPARÎ ³ inactivation leading to pulmonary fibrosis. Environment International, 2021, 147, 106339.	10.0	14
5	Physical analysis reveals distinct responses of human bronchial epithelial cells to guanidine and isothiazolinone biocides. Toxicology and Applied Pharmacology, 2021, 424, 115589.	2.8	3
6	Identification of adverse outcome pathway related to high-density polyethylene microplastics exposure: Caenorhabditis elegans transcription factor RNAi screening and zebrafish study. Journal of Hazardous Materials, 2020, 388, 121725.	12.4	34
7	Cross-sectional and longitudinal associations between global DNA (hydroxy) methylation and exposure biomarkers of the Hebei Spirit oil spill cohort in Taean, Korea. Environmental Pollution, 2020, 263, 114607.	7.5	3
8	Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCastâ,,¢ and deep learning models combined approach. Environment International, 2020, 137, 105557.	10.0	59
9	Activation of the nucleotide excision repair pathway by crude oil exposure: A translational study from model organisms to the Hebei Spirit Oil Spill Cohort. Environmental Pollution, 2019, 254, 112997.	7.5	3
10	Highâ€ŧhroughput COPAS assay for screening of developmental and reproductive toxicity of nanoparticles using the nematodeCaenorhabditis elegans. Journal of Applied Toxicology, 2019, 39, 1470-1479.	2.8	7
11	Development of Adverse Outcome Pathway for PPARÎ ³ Antagonism Leading to Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast Database and a Deep Learning Artificial Neural Network Model-Based Approach. Chemical Research in Toxicology, 2019, 32, 1212-1222.	3.3	36
12	Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere, 2019, 231, 249-255.	8.2	165
13	Hazard potential of perovskite solar cell technology for potential implementation of "safe-by-design― approach. Scientific Reports, 2019, 9, 4242.	3.3	53
14	In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. International Journal of Molecular Sciences, 2019, 20, 1209.	4.1	25
15	Developing adverse outcome pathways on silver nanoparticle-induced reproductive toxicity via oxidative stress in the nematode <i>Caenorhabditis elegans</i> using a Bayesian network model. Nanotoxicology, 2018, 12, 1182-1197.	3.0	29
16	Use of adverse outcome pathways in chemical toxicity testing: potential advantages and limitations. Environmental Health and Toxicology, 2018, 33, e2018002.	1.8	22
17	Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans. Toxicology, 2018, 410, 83-95.	4.2	33
18	Global metabolomics approach in in vitro and in vivo models reveals hepatic glutathione depletion induced by amorphous silica nanoparticles. Chemico-Biological Interactions, 2018, 293, 100-106.	4.0	25

#	Article	IF	CITATIONS
19	JAK/STAT and TGF-ß activation as potential adverse outcome pathway of TiO2NPs phototoxicity in Caenorhabditis elegans. Scientific Reports, 2017, 7, 17833.	3.3	21