Chao-Jun Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4243861/chao-jun-li-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,628 180 497 97 h-index g-index citations papers 8.2 8.27 731 42,372 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
497	Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones <i>Chemical Science</i> , 2022 , 13, 698-703	9.4	O
496	Umpolung carbonyls enable direct allylation and olefination of carbohydrates <i>Science Advances</i> , 2022 , 8, eabm6840	14.3	4
495	Light-driven transition-metal-free direct decarbonylation of unstrained diaryl ketones via a dual C-C bond cleavage <i>Nature Communications</i> , 2022 , 13, 1805	17.4	2
494	Demetallation of organometallic and metal-mediated reactions. Innovation(China), 2022, 100262	17.8	1
493	Ruthenium(ii)-catalyzed regioselective 1,6-conjugate addition of umpolung aldehydes as carbanion equivalents <i>Chemical Science</i> , 2021 , 13, 118-122	9.4	2
492	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	6
491	Palladium-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes: Switching Regioselectivity via Simple Hydrazones. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13098-131	d4·4	21
490	Palladium-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes: Switching Regioselectivity via Simple Hydrazones. <i>Angewandte Chemie</i> , 2021 , 133, 13208-13214	3.6	4
489	Study of Rhodamine-Based Fluorescent Probes for Organic Radical Intermediates. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 4059-4064	3.2	1
488	A cross-dehydrogenative C(sp)-H heteroarylation via photo-induced catalytic chlorine radical generation. <i>Nature Communications</i> , 2021 , 12, 4010	17.4	23
487	C(sp)-C(sp) bond formation via nickel-catalyzed deoxygenative homo-coupling of aldehydes/ketones mediated by hydrazine. <i>Nature Communications</i> , 2021 , 12, 3729	17.4	3
486	Dearomatization-Rearomatization Strategy for ortho-Selective Alkylation of Phenols with Primary Alcohols. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4043-4048	16.4	13
485	Group-III Nitrides Catalyzed Transformations of Organic Molecules. <i>CheM</i> , 2021 , 7, 64-92	16.2	3
484	Shining Light on the Light-Bearing Element: A Brief Review of Photomediated CH Phosphorylation Reactions. <i>Synthesis</i> , 2021 , 53, 1003-1022	2.9	6
483	Addition reactions of organic carbanion equivalents via hydrazones in water. <i>Tetrahedron</i> , 2021 , 80, 131	884	9
482	Catalytic hydrogenation of CO2 from air via porous silica-supported Au nanoparticles in aqueous solution. <i>Green Chemistry</i> , 2021 , 23, 3740-3749	10	4
481	Photo-induced transition-metal and external photosensitizer-free organic reactions. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 3594-3613	5.2	7

(2020-2021)

480	Modern methods for the synthesis of perfluoroalkylated aromatics. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 7116-7128	3.9	3
479	Cross-dehydrogenative coupling: a sustainable reaction for CII bond formations. <i>Green Chemistry</i> , 2021 , 23, 6789-6862	10	22
478	Photoinduced transition-metal and external photosensitizer free cross-coupling of aryl triflates with trialkyl phosphites. <i>Chemical Communications</i> , 2021 , 57, 8429-8432	5.8	3
477	Catalyst-free generation of acyl radicals induced by visible light in water to construct C-N bonds. Organic and Biomolecular Chemistry, 2021 , 19, 1970-1975	3.9	5
476	Carbonyl umpolung as an organometallic reagent surrogate. <i>Chemical Society Reviews</i> , 2021 , 50, 10733	-1 5 087 5 12	9
475	Photoinduced Transition-Metal and External Photosensitizer Free Phosphonation of Unactivated C(sp2) Bond via SET Process under Mild Conditions. <i>Fundamental Research</i> , 2021 , 1, 742-742		3
474	Direct deoxygenative borylation of carboxylic acids. <i>Nature Communications</i> , 2021 , 12, 4970	17.4	8
473	Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. <i>Chemical Reviews</i> , 2021 , 121, 12548-12680	68.1	33
472	Photo-induced transition-metal and photosensitizer free crossBoupling of aryl halides with disulfides. <i>Green Synthesis and Catalysis</i> , 2021 , 2, 303-306	9.3	16
47 ¹	Copper-Catalyzed Conjugate Addition of Carbonyls as Carbanion Equivalent via Hydrazones. Journal of Organic Chemistry, 2021 , 86, 13111-13117	4.2	4
470	Visible-Light Photoredox Catalyzed Double C-H Functionalization: Radical Cascade Cyclization of Ethers with Benzimidazole-Based Cyanamides. <i>Organic Letters</i> , 2021 , 23, 692-696	6.2	9
469	Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. <i>Chemical Society Reviews</i> , 2021 , 50, 10955-10982	58.5	13
468	Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. <i>Organic Letters</i> , 2020 , 22, 8808-8813	6.2	8
467	Palladium-Catalyzed Formal Hydroalkylation of Aryl-Substituted Alkynes with Hydrazones. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14009-14013	16.4	22
466	Photocatalytic Methylation of Nonactivated sp3 and sp2 CH Bonds Using Methanol on GaN. <i>ACS Catalysis</i> , 2020 , 10, 6248-6253	13.1	9
465	Palladium-catalyzed hydroalkylation of methylenecyclopropanes with simple hydrazones. <i>Chemical Science</i> , 2020 , 11, 10759-10763	9.4	14
464	Photoinduced transition-metal- and external-photosensitizer-free intramolecular aryl rearrangement C(Ar)-O bond cleavage. <i>Chemical Science</i> , 2020 , 11, 5740-5744	9.4	20
463	A Cu/Cinchona P,N-ligand system enabled general asymmetric C(sp3)-C(sp) coupling. <i>Science China Chemistry</i> , 2020 , 63, 751-752	7.9	2

462	GaN nanowires as a reusable photoredox catalyst for radical coupling of carbonyl under blacklight irradiation. <i>Chemical Science</i> , 2020 , 11, 7864-7870	9.4	12
461	Metal-Free Direct Deoxygenative Borylation of Aldehydes and Ketones. <i>Journal of the American Chemical Society</i> , 2020 , 142, 13011-13020	16.4	29
460	Photoinduced catalyst-free deborylationdeuteration of arylboronic acids with D2O. <i>Green Chemistry</i> , 2020 , 22, 6323-6327	10	16
459	Methane conversion to ethylene over GaN catalysts. Effect of catalyst nitridation. <i>Applied Catalysis A: General</i> , 2020 , 595, 117430	5.1	15
458	Switch in Selectivity for Formal Hydroalkylation of 1,3-Dienes and Enynes with Simple Hydrazones. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6466-6472	16.4	26
457	Dearomatization-Rearomatization Strategy for Synthesizing Carbazoles with 2,2'-Biphenols and Ammonia by Dual C(Ar)-OH Bond Cleavages. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 13200)- 1 ·320	5 ⁹
456	Aldehyde as a Traceless Directing Group for Regioselective C-H Alkylation Catalyzed by Rhodium(III) in Air. <i>Organic Letters</i> , 2020 , 22, 1259-1264	6.2	9
455	Palladium-catalyzed aerobic synthesis of ortho-substituted phenols from cyclohexanones and primary alcohols. <i>Chemical Communications</i> , 2020 , 56, 1239-1242	5.8	14
454	Synergistic Relay Reactions To Achieve Redox-Neutral \oplus -Alkylations of Olefinic Alcohols with Ruthenium(II) Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4544-4549	16.4	18
453	Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory. <i>Molecular Catalysis</i> , 2020 , 482, 110606	3.3	7
452	Light-Driven Metal-Free Direct Deoxygenation of Alcohols under Mild Conditions. <i>IScience</i> , 2020 , 23, 101419	6.1	10
45 ¹	Cl Oxidative Cleavage in the Aerobic Esterification of Alcohol. <i>CheM</i> , 2020 , 6, 3163-3165	16.2	2
450	Empowering alcohols as carbonyl surrogates for Grignard-type reactions. <i>Nature Communications</i> , 2020 , 11, 6022	17.4	7
449	Perspectives on green synthesis and catalysis. <i>Green Synthesis and Catalysis</i> , 2020 , 1, 1-11	9.3	68
448	Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage. <i>Chemical Reviews</i> , 2020 , 120, 10454-10515	68.1	61
447	Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization-Rearomatization Processes. <i>Accounts of Chemical Research</i> , 2020 , 53, 239	5 -2 4313	3 ²¹
446	DearomatizationRearomatization Strategy for Palladium-Catalyzed CN Cross-Coupling Reactions. <i>Synlett</i> , 2020 , 32,	2.2	3
445	Aromatic Chemistry in the Excited State: Facilitating Metal-Free Substitutions and Cross-Couplings. <i>Angewandte Chemie</i> , 2020 , 132, 1802-1812	3.6	4

(2019-2020)

444	Aromatic Chemistry in the Excited State: Facilitating Metal-Free Substitutions and Cross-Couplings. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1786-1796	16.4	33
443	Ruthenium catalyzed Belective alkylation of vinylpyridines with aldehydes/ketones NH mediated deoxygenative couplings. <i>Chemical Science</i> , 2020 , 12, 2870-2875	9.4	9
442	Green Oxidative Synthesis of Carboxylic Acids 2019 , 159-180		2
441	En route to metal-mediated and metal-catalysed reactions in water. Chemical Science, 2019, 10, 34-46	9.4	30
440	Silver Nanoparticles in Organic Transformations 2019 , 723-793		3
439	Hydrogen bonding promoted simple and clean photo-induced reduction of C-X bond with isopropanol. <i>Chemical Communications</i> , 2019 , 55, 767-770	5.8	25
438	An Old Dog with New Tricks: Enjoin Wolff K ishner Reduction for Alcohol Deoxygenation and C C Bond Formations. <i>Synlett</i> , 2019 , 30, 1508-1524	2.2	28
437	Water E he greenest solvent overall. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2019 , 18, 118-12	23 7.9	26
436	Nickel-Catalyzed Cross-Coupling of Umpolung Carbonyls and Alkyl Halides. <i>Journal of Organic Chemistry</i> , 2019 , 84, 6312-6322	4.2	16
435	Direct Synthesis of Diphenylamines from Phenols and Ammonium Formate Catalyzed by Palladium. <i>ChemSusChem</i> , 2019 , 12, 2999-3002	8.3	19
434	Dearomatization-Rearomatization Strategy for Reductive Cross-Coupling of Indoles with Ketones in Water. <i>Organic Letters</i> , 2019 , 21, 2302-2306	6.2	30
433	Direct conversion of phenols into primary anilines with hydrazine catalyzed by palladium. <i>Chemical Science</i> , 2019 , 10, 4775-4781	9.4	41
432	Direct Catalytic Methanol-to-Ethanol Photo-conversion via Methyl Carbene. <i>CheM</i> , 2019 , 5, 858-867	16.2	26
431	Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. <i>Chemical Science</i> , 2019 , 10, 5018-5024	9.4	68
430	Transition-Metal-Free C-C, C-O, and C-N Cross-Couplings Enabled by Light. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6755-6764	16.4	55
429	Coupling Reactions and C?H Functionalization 2019 , 331-406		
428	Asymmetric Silver-Catalyzed Reactions 2019 , 533-643		1
427	Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. <i>Organic Letters</i> , 2019 , 21, 1301-1305	6.2	53

426	Direct dehydrogenative alkyl Heck-couplings of vinylarenes with umpolung aldehydes catalyzed by nickel. <i>Nature Communications</i> , 2019 , 10, 715	17.4	42
425	Silver-Catalyzed Cyclizations 2019 , 85-181		1
424	Construction of Spirocyclic Tetrahydro-Ecarbolines via Cross-Annulation of Phenols with Tryptamines in Water. <i>Organic Letters</i> , 2019 , 21, 7033-7037	6.2	24
423	En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. <i>Journal of Organic Chemistry</i> , 2019 , 84, 12705-12721	4.2	107
422	Umpolung cross-coupling of polyfluoroarenes with hydrazones via activation of C-F bonds. <i>Chemical Communications</i> , 2019 , 55, 9323-9326	5.8	12
421	Nickel-Catalyzed Regioselective Hydrobenzylation of 1,3-Dienes with Hydrazones. <i>ACS Catalysis</i> , 2019 , 9, 9199-9205	13.1	31
420	Metal-Free Construction of the C(sp)-CF Bond: Trifluoromethylation of Hydrazones with Togni's Reagent under Mild Conditions. <i>Organic Letters</i> , 2019 , 21, 5948-5951	6.2	11
419	Efficient Nitrogen Fixation Catalyzed by Gallium Nitride Nanowire Using Nitrogen and Water. <i>IScience</i> , 2019 , 17, 208-216	6.1	10
418	Light-enabled metal-free pinacol coupling by hydrazine. <i>Chemical Science</i> , 2019 , 10, 10937-10943	9.4	17
417	Conversion of Lignin into High Value Chemical Products 2019 , 385-403		2
416	Introduction to Silver Chemistry 2019 , 1-32		
415	Silver-catalyzed Cycloaddition Reactions 2019 , 33-83		6
414	Silver-Catalyzed Reduction and Oxidation of Aldehydes and Their Derivatives 2019, 645-660		1
413	Silver Complexes in Organic Transformations 2019 , 661-722		5
412	Silver-Mediated Radical Reactions 2019 , 183-269		3
411	Metal-Free Photoinduced Transformation of Aryl Halides and Diketones into Aryl Ketones. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 2721-2724	3.2	10
410	Two-in-One Strategy for Palladium-Catalyzed C-H Functionalization in Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2859-2863	16.4	36
409	Silver-Mediated Fluorination, Perfluoroalkylation, and Trifluoromethylthiolation Reactions 2019 , 271-3	30	1

 $_{\mbox{\scriptsize 408}}$ $\,$ Silver-Catalyzed CO2 Incorporation 2019, 407-438 $\,$

407	Silver-Catalyzed Carbene, Nitrene, and Silylene Transfer Reactions 2019 , 439-532		8
406	Exploration of new reaction tools for late-stage functionalization of complex chemicals. <i>Canadian Journal of Chemistry</i> , 2019 , 97, 67-85	0.9	12
405	Cross-Coupling of Phenol Derivatives with Umpolung Aldehydes Catalyzed by Nickel. <i>ACS Catalysis</i> , 2018 , 8, 4622-4627	13.1	44
404	Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models. <i>Angewandte Chemie</i> , 2018 , 130, 3814-3819	3.6	26
403	Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3752-3757	16.4	67
402	Carboxyl-Directed Conjugate Addition of CH Bonds to H,Dnsaturated Ketones in Air and Water. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1358-1363	5.6	30
401	Nickel-catalyzed cross-coupling of aldehydes with aryl halides via hydrazone intermediates. <i>Chemical Communications</i> , 2018 , 54, 1750-1753	5.8	37
400	Silver(I)-Catalyzed Widely Applicable Aerobic 1,2-Diol Oxidative Cleavage. <i>Angewandte Chemie</i> , 2018 , 130, 2646-2650	3.6	4
399	Silver(I)-Catalyzed Widely Applicable Aerobic 1,2-Diol Oxidative Cleavage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2616-2620	16.4	33
398	Copper-Catalyzed Radical Reductive Arylation of Styrenes with Aryl Iodides Mediated by Zinc in Water. <i>Journal of Organic Chemistry</i> , 2018 , 83, 7416-7422	4.2	12
397	Ruthenium-catalyzed umpolung carboxylation of hydrazones with CO. Chemical Science, 2018, 9, 4873-4	8)7./8	52
396	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal Drganic Frameworks. <i>Crystal Growth and Design</i> , 2018 , 18, 3222-3228	3.5	24
395	Revised Mechanism for a Ruthenium-Catalyzed Coupling of Aldehyde and Terminal Alkyne. <i>ACS Omega</i> , 2018 , 3, 3218-3227	3.9	5
394	Chemistry Takes a Bath: Reactions in Aqueous Media. <i>Journal of Organic Chemistry</i> , 2018 , 83, 7319-7322	4.2	65
393	Formal Cross-Coupling of Diaryl Ethers with Ammonia by Dual C(Ar) D Bond Cleavages. <i>ACS Catalysis</i> , 2018 , 8, 8873-8878	13.1	37
392	Metal-Free and Redox-Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13499-13503	16.4	34
391	Metal-Free and Redox-Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. <i>Angewandte Chemie</i> , 2018 , 130, 13687-13691	3.6	6

390	Catalytic N-modification of ⊞-amino acids and small peptides with phenol under bio-compatible conditions. <i>Communications Chemistry</i> , 2018 , 1,	6.3	20
389	Iron-Catalyzed Nucleophilic Addition Reaction of Organic Carbanion Equivalents via Hydrazones. <i>Organic Letters</i> , 2018 , 20, 3801-3805	6.2	27
388	Synthesis of 6-Trifluoromethylphenanthridines through Radical Trifluoromethylation of Isocyanides with Sodium Triflinate under Visible Light. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 2498-250	o3 ^{.2}	27
387	Direct synthesis of indenes via a rhodium-catalyzed multicomponent C-H annulation reaction. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 8042-8047	3.9	6
386	Direct conjugate additions using aryl and alkyl organic halides in air and water. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 3579-3584	5.2	9
385	NH as traceless mediator for homo- and cross- aryl coupling. <i>Nature Communications</i> , 2018 , 9, 4739	17.4	34
384	Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. <i>Angewandte Chemie</i> , 2018 , 130, 16758-16762	3.6	15
383	Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16520-16524	16.4	41
382	Radical difluoromethylthiolation of aromatics enabled by visible light. <i>Chemical Science</i> , 2018 , 9, 5781-5	57 <u>98.</u> 6	47
381	CL Bond Formation by Oxidative Ring-Opening Homocoupling of Cyclobutanols. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 1070-1073	3.2	13
380	Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6302-6306	16.4	53
379	Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie</i> , 2017 , 129, 6399-64	03 .6	19
378	Transition-Metal-Free Alkynylation of 2-Oxindoles through Radical-Radical Coupling. <i>Journal of Organic Chemistry</i> , 2017 , 82, 2656-2663	4.2	24
377	Palladium-Catalyzed Direct ECH Arylation of Ketones with Arylboronic Acids in Water. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 2402-2406	5.6	18
376	Palladium-catalysed atom-economical synthesis of conjugated dienals from terminal acetylenes and acrolein. <i>Chemical Communications</i> , 2017 , 53, 6136-6139	5.8	4
375	Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH. <i>CheM</i> , 2017 , 2, 688-702	16.2	115
374	An Adventure in Sustainable Cross-Coupling of Phenols and Derivatives via Carbon Dxygen Bond Cleavage. ACS Catalysis, 2017 , 7, 510-519	13.1	160
373	Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. <i>Nature Chemistry</i> , 2017 , 9, 374-378	17.6	97

(2016-2017)

372	Addendum: Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. <i>Nature Chemistry</i> , 2017 , 9, 723	17.6		
371	Nitrogen Photofixation over III-Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8701-8705	16.4	72	
370	Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8621-8627	16.4	109	
369	Nitrogen Photofixation over III-Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. <i>Angewandte Chemie</i> , 2017 , 129, 8827-8831	3.6	23	
368	Selective CopperN-Heterocyclic Carbene (Copper-NHC)-Catalyzed Aerobic Cleavage of El Lignin Models to Aldehydes. <i>ACS Catalysis</i> , 2017 , 7, 3344-3348	13.1	36	
367	Umpolung Addition of Aldehydes to Aryl Imines. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6260-6263	16.4	68	
366	Umpolung Addition of Aldehydes to Aryl Imines. Angewandte Chemie, 2017, 129, 6356-6359	3.6	20	
365	Rhodium-catalyzed regiospecific CH ortho-phenylation of benzoic acids with Cu/air as an oxidant. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 417-420	5.2	7	
364	Catalyst-Free and Redox-Neutral Innate Trifluoromethylation and Alkylation of Aromatics Enabled by Light. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14315-14321	16.4	117	
363	Ruthenium(ii)-catalyzed olefination carbonyl reductive cross-coupling. Chemical Science, 2017, 8, 8193-	81,947	41	
362	Development of an indicator for the direct visualization of radical intermediates in organic reactions. <i>Chemical Communications</i> , 2017 , 53, 11225-11228	5.8	6	
361	Recent Synthetic Applications of Catalyst-Free Photochemistry. <i>Synlett</i> , 2017 , 28, 2714-2754	2.2	39	
360	Formal aromaticity transfer for palladium-catalyzed coupling between phenols and pyrrolidines/indolines. <i>Chemical Science</i> , 2017 , 8, 6954-6958	9.4	32	
359	Palladium-Catalyzed Synthesis of N-Cyclohexyl Anilines from Phenols with Hydrazine or Hydroxylamine via N-N/O Cleavage. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 3648-3653	5.6	34	
358	Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes. <i>Chemistry - A European Journal</i> , 2017 , 23, 793-797	4.8	17	
357	Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. <i>Green Chemistry</i> , 2016 , 18, 129-1	33 ¹⁰	39	
356	Photo-induced Carboiodination: A Simple Way to Synthesize Functionalized Dihydrobenzofurans and Indolines. <i>Chemistry - A European Journal</i> , 2016 , 22, 15252-15256	4.8	30	
355	Photo-induced iodination of aryl halides under very mild conditions. <i>Nature Protocols</i> , 2016 , 11, 1948-1	958 .8	27	

354	Non-symmetrical diarylcarboxylic acids via rhodium(I)-catalyzed regiospecific cross-dehydrogenation coupling of aromatic acids: twofold direct C田 bond activations in water. <i>RSC Advances</i> , 2016 , 6, 91617-91620	3.7	10
353	Transition-Metal-Free Coupling of Alkynes with ∃-Bromo Carbonyl Compounds: An Efficient Approach towards ☐-Alkynoates and Allenoates. <i>Chemistry - A European Journal</i> , 2016 , 22, 5888-93	4.8	28
352	Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement. <i>Chemistry - A European Journal</i> , 2016 , 22, 6262-7	4.8	19
351	Microwave-Assisted Synthesis of Magnetic Carboxymethyl Cellulose-Embedded AgHe3O4 Nanocatalysts for Selective Carbonyl Hydrogenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 965-973	8.3	60
350	Pd-Catalyzed Homo Cross-Dehydrogenative Coupling of 2-Arylpyridines by Using I2 as the Sole Oxidant. <i>Synthesis</i> , 2016 , 48, 1616-1621	2.9	7
349	FeCl3-Mediated Radical Tandem Reactions of 3-Benzyl-2-oxindoles with Styrene Derivatives for the Stereoselective Synthesis of Spirocyclohexene Oxindoles. <i>Organic Letters</i> , 2016 , 18, 1382-5	6.2	36
348	Copper-catalyzed asymmetric sp C-H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 2636-2643	2.5	22
347	Reaction of alkenecarboxylic acids with isocyanates via rhodium(III)-catalyzed CH activation: a versatile route to cyclic imides. <i>Organic Chemistry Frontiers</i> , 2016 , 3, 971-974	5.2	17
346	Transition-Metal-Catalyzed Direct Addition of Aryl C-H Bonds to Unsaturated Electrophiles. <i>Chemical Record</i> , 2016 , 16, 1178-90	6.6	13
345	En Route to a Practical Primary Alcohol Deoxygenation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5433-40	16.4	73
344	Metal-Free Markovnikov-Type Alkyne Hydration under Mild Conditions. <i>Organic Letters</i> , 2016 , 18, 2184-	76.2	87
343	Simple and Clean Photoinduced Aromatic Trifluoromethylation Reaction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5809-12	16.4	218
342	Rhodium-catalysed tandem dehydrogenative coupling Michael addition: direct synthesis of phthalides from benzoic acids and alkenes. <i>RSC Advances</i> , 2016 , 6, 40626-40630	3.7	18
341	Exploration of New Chemical Reactivities for Sustainable Molecular Transformations. <i>CheM</i> , 2016 , 1, 423-437	16.2	38
340	Catalytic Grignard-Type Addition of Aryl C-H Bonds to C=O and C=N Bonds 2016 , 3-15		3
339	Dehydrative condensation of carbonyls with non-acidic methylenes enabled by light: synthesis of benzofurans. <i>Chemical Communications</i> , 2016 , 52, 13120-13123	5.8	13
338	Phosphorylation of Glycine Derivatives via Copper(I)-Catalyzed Csp3 ^{III} Bond Functionalization. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 2553-2557	5.6	37
337	Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. <i>Angewandte Chemie</i> , 2016 , 128, 10964-10968	3.6	20

336	Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10806-10	16.4	64
335	Photon can tremendously accelerate the alkyl iodidesælimination in water. <i>Tetrahedron Letters</i> , 2015 , 56, 1699-1702	2	7
334	Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5718-21	16.4	74
333	Photo-induced Metal-Catalyst-Free Aromatic Finkelstein Reaction. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8328-31	16.4	134
332	Copper(II)-catalyzed highly regio- and stereo-selective hydrosilylation of unactivated internal alkynes with silylborate in water. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 5871-4	3.9	13
331	Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. <i>Science China Chemistry</i> , 2015 , 58, 1286-1291	7.9	27
330	A transition-metal-free Heck-type reaction between alkenes and alkyl iodides enabled by light in water. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 6170-4	3.9	24
329	Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. <i>Chemical Science</i> , 2015 , 6, 4174-4	19 8	104
328	Sustainable Synthesis of Magnetic Ruthenium-Coated Iron Nanoparticles and Application in the Catalytic Transfer Hydrogenation of Ketones. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 814-8	203	40
327	Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water-"silver mirror": From stoichiometric to catalytic. <i>Science Advances</i> , 2015 , 1, e15	06030	68
326	Empowering a transition-metal-free coupling between alkyne and alkyl iodide with light in water. <i>Nature Communications</i> , 2015 , 6, 6526	17.4	111
325	Gold-catalyzed tandem reactions of amide-aldehyde-alkyne coupling and cyclization-synthesis of 2,4,5-trisubstituted oxazoles. <i>Chemical Science</i> , 2015 , 6, 7332-7335	9.4	40
324	A convenient synthesis of N-aryl benzamides by rhodium-catalyzed ortho-amidation and decarboxylation of benzoic acids. <i>Chemistry - A European Journal</i> , 2015 , 21, 1900-3	4.8	60
323	Palladium-catalyzed benzothieno[2,3-b]indole formation via dehydrative-dehydrogenative double C-H sulfuration using sulfur powder, indoles and cyclohexanones. <i>Chemical Communications</i> , 2015 , 51, 1031-4	5.8	76
322	Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 447-51	3.9	98
321	Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes. <i>APL Materials</i> , 2015 , 3, 116106	5.7	9
320	Gold(III) Chloride 2015 , 1-24		
319	Formal Direct Cross-Coupling of Phenols with Amines. <i>Angewandte Chemie</i> , 2015 , 127, 14695-14699	3.6	29

318	Rhodium(I)-Catalyzed Regiospecific Dimerization of Aromatic Acids: Two Direct C?H Bond Activations in Water. <i>Angewandte Chemie</i> , 2015 , 127, 5810-5813	3.6	25
317	Formal Direct Cross-Coupling of Phenols with Amines. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14487-91	16.4	120
316	Fe(III)-Catalyzed Cross-Dehydrogenative Arylation (CDA) between Oxindoles and Arenes under an Air Atmosphere. <i>Chemistry - A European Journal</i> , 2015 , 21, 16744-8	4.8	44
315	Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7576-9	16.4	36
314	Palladium-catalyzed 1,4-addition of terminal alkynes to acrolein. <i>Tetrahedron</i> , 2015 , 71, 5866-5870	2.4	6
313	Copper-Catalyzed Oxidative C(sp(3))-H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. <i>Organic Letters</i> , 2015 , 17, 2894-7	6.2	72
312	Catalytic dehydrogenative aromatization: an alternative route to functionalized arenes. <i>Organic Chemistry Frontiers</i> , 2015 , 2, 279-287	5.2	72
311	The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 74-100	16.4	1464
310	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. <i>Tetrahedron</i> , 2014 , 70, 6162-6168	2.4	12
309	A Rhodium-Catalyzed Cascade Cyclization: Direct Synthesis of N-Substituted Phthalimides from Isocyanates and Benzoic Acids. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 723-728	5.6	63
308	Photoinduced conversion of methane into benzene over GaN nanowires. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7793-6	16.4	96
307	Functionalization of cellulose nanocrystal films via Ehiol@neŒlick reaction. RSC Advances, 2014, 4, 6965	3.7	47
306	Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14106-9	16.4	41
305	A silver-catalyzed transfer hydrogenation of aldehyde in air and water. <i>Organic Chemistry Frontiers</i> , 2014 , 1, 161	5.2	18
304	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. <i>Tetrahedron</i> , 2014 , 70, 8952-8958	2.4	6
303	Combined A3 Coupling and Click Chemistry Approach for the Synthesis of Dendrimer-Based Biological Tools. <i>ACS Macro Letters</i> , 2014 , 3, 1079-1083	6.6	17
302	GOLD-CATALYZED MULTI-COMPONENT REACTIONS. Catalytic Science Series, 2014, 225-251	0.4	1
301	Direct sp3 C-H bond arylation, alkylation, and amidation of tetrahydroisoquinolines mediated by hypervalent iodine(III) under mild conditions. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2189-92	3.9	42

(2014-2014)

300	Aniline carbamates: a versatile and removable motif for palladium-catalyzed directed C-H activation. <i>Chemistry - A European Journal</i> , 2014 , 20, 12066-70	4.8	25
299	A complete switch of the directional selectivity in the annulation of 2-hydroxybenzaldehydes with alkynes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13862-5	16.4	39
298	Carbophilic Cycloisomerization Reactions of Enynesand Domino Processes 2014 , 27-68		6
297	Alkyne-Azide Reactions 2014 , 113-142		2
296	Catalytic Conjugate Additions of Alkynes 2014 , 171-200		
295	Catalytic Nucleophilic Addition of Alkynes to Imines: The A3 (AldehydeAlkyneAmine) Coupling 2014 , 239-268		6
294	Catalytic Dimerization of Alkynes 2014 , 299-334		3
293	The Alkyne Zipper Reaction in Asymmetric Synthesis 2014 , 365-394		3
292	Redox Isomerization of Propargyl Alcohols to Enones 2014 , 9-26		1
291	Alkyne Metathesis in Organic Synthesis 2014 , 69-112		1
290	Catalytic Cycloaddition Reactions 2014 , 143-170		2
289	Catalytic Enantioselective Addition of Terminal Alkynes to Carbonyls 2014 , 201-238		1
288	The Oxidative Dimerization of Acetylenes and Related Reactions: Synthesis and Applications of Conjugated 1,3-Diynes 2014 , 335-364		
287	The Sonogashira Reaction 2014 , 269-298		
286	The Barbier-Grignard-type arylation of aldehydes using unactivated aryl iodides in water. <i>Nature Communications</i> , 2014 , 5, 4254	17.4	57
285	A Complete Switch of the Directional Selectivity in the Annulation of 2-Hydroxybenzaldehydes with Alkynes. <i>Angewandte Chemie</i> , 2014 , 126, 14082-14085	3.6	7
284	Dehydrierende Kreuzkupplungen von C-H-Bindungen: vielseitige Verfahren zur Bildung von C-C-Bindungen. <i>Angewandte Chemie</i> , 2014 , 126, 76-103	3.6	370
283	Gold(III) Chloride 2014 , 1-10		

282	Switching the Z/E selectivity in the palladium(II)-catalyzed decarboxylative Heck arylations of trans-cinnamaldehydes by solvent. <i>Organic Letters</i> , 2014 , 16, 6282-5	6.2	16
281	Thermal Non-Oxidative Aromatization of Light Alkanes Catalyzed by Gallium Nitride. <i>Angewandte Chemie</i> , 2014 , 126, 14330-14333	3.6	11
280	Palladium-catalyzed 1,4-Addition of Terminal Alkynes to Conjugated Enones 2014 , 72-82		1
279	Metal-Free Oxidative Coupling: Xanthone Formation via Direct Annulation of 2-Aryloxybenzaldehyde using Tetrabutylammonium Bromide as a Promoter in Aqueous Medium. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2191-2196	5.6	55
278	A Pd(0)-catalyzed direct dehydrative coupling of terminal alkynes with allylic alcohols to access 1,4-enynes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12536-9	16.4	69
277	Iridium-Catalyzed Direct Dehydroxylation of Alcohols. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 6496-6500	3.2	31
276	Silver-catalyzed hydrogenation of aldehydes in water. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11871-4	16.4	42
275	Cu(II)-catalyzed allylic silylation of Morita-Baylis-Hillman alcohols via dual activation of Si-B bond and hydroxyl group. <i>Journal of Organic Chemistry</i> , 2013 , 78, 11076-81	4.2	23
274	Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1160-1164	8.3	63
273	Catalytic Nucleophilic Additions of Alkynes in Water 2013 , 87-108		1
272	Synthesis of indene frameworks via rhodium-catalyzed cascade cyclization of aromatic ketone and unsaturated carbonyl compounds. <i>Organic Letters</i> , 2013 , 15, 1476-9	6.2	77
271	Rhodium(III)-Catalyzed C(sp2)?H Activation and Electrophilic Amidation with N-Fluorobenzenesulfonimide. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 869-873	5.6	98
270	Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. <i>Green Chemistry</i> , 2013 , 15, 2141	10	82
269	Simple and direct sp3 C-H bond arylation of tetrahydroisoquinolines and isochromans via 2,3-dichloro-5,6-dicyano-1,4-benzoquinone oxidation under mild conditions. <i>Organic Letters</i> , 2013 , 15, 3650-3	6.2	85
268	Transition-metal-free one-pot synthesis of biaryls from Grignard reagents and substituted cyclohexanones. <i>Chemistry - A European Journal</i> , 2013 , 19, 7151-5	4.8	29
267	Dual CH activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. <i>Tetrahedron</i> , 2013 , 69, 4436-4444	2.4	53
266	Magnetically Recoverable CuFe2O4 Nanoparticles as Highly Active Catalysts for Csp3-Csp and Csp3-Csp3 Oxidative Cross-Dehydrogenative Coupling. <i>Synlett</i> , 2013 , 24, 1637-1642	2.2	31
265	Highly Efficient Reduction of Aldehydes with Silanes in Water Catalyzed by Silver. <i>Synlett</i> , 2013 , 24, 20	4 <u>9-2</u> 05	6 11

264	A(3)-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. <i>Beilstein Journal of Organic Chemistry</i> , 2013 , 9, 1388-96	2.5	57
263	Silver-Catalyzed Hydrogenation of Aldehydes in Water. <i>Angewandte Chemie</i> , 2013 , 125, 12087-12090	3.6	7
262	Visible-Light-Triggered Direct Benzoyloxylation of Electron-Rich Arenes at Room Temperature without Chelation Assistance. <i>European Journal of Organic Chemistry</i> , 2012 , 2012, n/a-n/a	3.2	6
261	Ligand Modified CuFe2O4 Nanoparticles as Magnetically Recoverable and Reusable Catalyst for Azide-Alkyne Click Condensation. <i>Heterocycles</i> , 2012 , 86, 1023	0.8	14
260	Organic Synthesis in Water 2012 , 263-295		1
259	A Novel Rhodium-Catalyzed Cascade Cyclization: Direct Synthesis of 3-Substituted Phthalides from Aldehydes and Aromatic Acids. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2933-2938	5.6	88
258	Ruthenium-catalyzed aldehyde functionality reshuffle: selective synthesis of E-2-arylcinnamaldehydes from E-Ebromostyrenes and aryl aldehydes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16468-71	16.4	12
257	Iron-catalyzed arylation of benzoazoles with aromatic aldehydes using oxygen as oxidant. <i>Green Chemistry</i> , 2012 , 14, 1577	10	58
256	Synthetic Chemistry with an Eye on Future Sustainability 2012 , 725-758		
255	tert-Butyl Hydroperoxide 2012 ,		1
255 254	tert-Butyl Hydroperoxide 2012, Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). Organic Letters, 2012, 14, 902-5	6.2	1 99
	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative	6.2	
254	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). <i>Organic Letters</i> , 2012 , 14, 902-5 Magnetic copperfron nanoparticles as simple heterogeneous catalysts for the azidellkyne click		99
²⁵⁴	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). <i>Organic Letters</i> , 2012 , 14, 902-5 Magnetic copperfron nanoparticles as simple heterogeneous catalysts for the azidellkyne click reaction in water. <i>Green Chemistry</i> , 2012 , 14, 622 Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with	10	99
254 253 252	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). <i>Organic Letters</i> , 2012 , 14, 902-5 Magnetic copperson nanoparticles as simple heterogeneous catalysts for the azidellkyne click reaction in water. <i>Green Chemistry</i> , 2012 , 14, 622 Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with molecular oxygen. <i>Organic Letters</i> , 2012 , 14, 5606-9 Development of a copper(II)-catalyzed three-component tandem synthesis of isoindolinone	10	99 164 108
254 253 252 251	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). <i>Organic Letters</i> , 2012 , 14, 902-5 Magnetic copperfron nanoparticles as simple heterogeneous catalysts for the azideBlkyne click reaction in water. <i>Green Chemistry</i> , 2012 , 14, 622 Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with molecular oxygen. <i>Organic Letters</i> , 2012 , 14, 5606-9 Development of a copper(II)-catalyzed three-component tandem synthesis of isoindolinone derivatives. <i>Canadian Journal of Chemistry</i> , 2012 , 90, 92-99 Site-specific modification of amino acids and peptides by aldehyde-alkyne-amine coupling under	6.2	99 164 108 26
254 253 252 251 250	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). <i>Organic Letters</i> , 2012 , 14, 902-5 Magnetic copperfron nanoparticles as simple heterogeneous catalysts for the azidellkyne click reaction in water. <i>Green Chemistry</i> , 2012 , 14, 622 Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with molecular oxygen. <i>Organic Letters</i> , 2012 , 14, 5606-9 Development of a copper(II)-catalyzed three-component tandem synthesis of isoindolinone derivatives. <i>Canadian Journal of Chemistry</i> , 2012 , 90, 92-99 Site-specific modification of amino acids and peptides by aldehyde-alkyne-amine coupling under ambient aqueous conditions. <i>Organic Letters</i> , 2012 , 14, 3000-3 Catalytic Aerobic Synthesis of Aromatic Ethers from Non-Aromatic Precursors. <i>Angewandte Chemie</i> ,	10 6.2 0.9 6.2	99 164 108 26 47

246	Silver-Catalyzed Direct Addition of Terminal Alkynes to Simple Cyclic Ketones in Water. <i>Synlett</i> , 2012 , 23, 2758-2762	2.2	11
245	Synthesis of Oxazolidinones, Dioxazolidinone and Polyoxazolidinone (A New Polyurethane) Via A Multi Component-Coupling of Aldehyde, Diamine Dihydrochloride, Terminal Alkyne and CO2. <i>Letters in Organic Chemistry</i> , 2012 , 9, 585-593	0.6	13
244	On water Promoted direct alkynylation of isatins catalyzed by NHC lilver complexes for the efficient synthesis of 3-hydroxy-3-ethynylindolin-2-ones. <i>Green Chemistry</i> , 2011 , 13, 549	10	77
243	Fe3O4 nanoparticle-supported copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines. <i>Organic Letters</i> , 2011 , 13, 442-5	6.2	162
242	Palladium-catalyzed Minisci reaction with simple alcohols. <i>Organic Letters</i> , 2011 , 13, 4581-3	6.2	97
241	Palladium-catalyzed oxidative sp2 C-H bond acylation with alcohols. <i>Organic Letters</i> , 2011 , 13, 1614-7	6.2	152
240	Alkynes as an eco-compatible Bn-call functionality orthogonal to biological conditions in water. <i>Chemical Science</i> , 2011 , 2, 1241-1249	9.4	35
239	Rhodium-catalyzed C-H activation and conjugate addition under mild conditions. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 7176-9	3.9	82
238	Phosphine ligand triggered oxidative decarbonylative homocoupling of aromatic aldehydes: selectively generating biaryls and diarylketones. <i>Chemical Communications</i> , 2011 , 47, 2161-3	5.8	46
237	Ruthenium-catalyzed para-selective oxidative cross-coupling of arenes and cycloalkanes. <i>Organic Letters</i> , 2011 , 13, 4977-9	6.2	110
236	Unorthodox chemistry for an unorthodox challenge: Exploration of new chemical reactivities for a sustainable future. <i>Science China Chemistry</i> , 2011 , 54, 1815-1830	7.9	10
235	Grignard-Type Arylation of Aldehydes via a Rhodium-Catalyzed C?H Activation under Mild Conditions. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1269-1273	5.6	136
234	Rhodium-Catalyzed Aerobic Coupling between Aldehydes and Arenesulfinic Acid Salts: A Novel Synthesis of Aryl Ketones. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1701-1706	5.6	63
233	Rearrangement of 2-Aryloxybenzaldehydes to 2-Hydroxybenzophenones by Rhodium-Catalyzed Cleavage of Aryloxy C?O Bonds. <i>Angewandte Chemie</i> , 2011 , 123, 9098-9101	3.6	5
232	Rearrangement of 2-aryloxybenzaldehydes to 2-hydroxybenzophenones by rhodium-catalyzed cleavage of aryloxy C-O bonds. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8936-9	16.4	33
231	Direct synthesis of aryl ketones by palladium-catalyzed desulfinative addition of sodium sulfinates to nitriles. <i>Chemistry - A European Journal</i> , 2011 , 17, 7996-9	4.8	110
230	Rhodium-catalyzed arylation of ⊞-amido sulfones with arylboronic acids in a water⊞oluene biphasic system. <i>Inorganica Chimica Acta</i> , 2011 , 369, 284-287	2.7	3
229	Iridium as a general catalyst for the decarbonylative addition of aldehydes to alkynes. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 211-215	2.3	8

228	Copper-catalyzed oxidative trifluoromethylation of benzylic sp3 CH bond adjacent to nitrogen in amines. <i>Tetrahedron Letters</i> , 2011 , 52, 1898-1900	2	52
227	Water-Promoted, Silver P hosphine Complex C atalyzed Stereoselective Cyclization of 2-(1-Hydroxy-3-arylprop-2-ynyl)phenols Leading to a Highly Efficient Approach to Aurones. <i>Synthetic Communications</i> , 2011 , 41, 3228-3236	1.7	7
226	The Preparation of Amides by Copper-Mediated Oxidative Coupling of Aldehydes and Amine Hydrochloride Salts 2011 , 14-21		
225	The First Cobalt-Catalyzed Transformation of Alkynyl C-H Bond: Aldehyde-Alkyne-Amine (AL) Coupling. <i>Synlett</i> , 2010 , 2010, 475-479	2.2	17
224	Magnetically Recoverable Iron Nanoparticle Catalyzed Cross-Dehydrogenaltive Coupling (CDC) between Two Cspl-H Bonds Using Molecular Oxygen. <i>Synlett</i> , 2010 , 2010, 2002-2008	2.2	12
223	Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. <i>Green Chemistry</i> , 2010 , 12, 570	10	271
222	Silver-Catalyzed Oxidative Coupling of Terminal Aromatic Alkynes and Benzylic Ethers. <i>Heterocycles</i> , 2010 , 82, 555	0.8	48
221	Ru-catalyzed decarbonylative addition of aliphatic aldehydes to terminal alkynes. <i>Organic Letters</i> , 2010 , 12, 3176-8	6.2	41
220	The development of catalytic nucleophilic additions of terminal alkynes in water. <i>Accounts of Chemical Research</i> , 2010 , 43, 581-90	24.3	330
219	Synthesis of Chiral 1,3-Disubstituted Tetrahydroisoquinolines and Their Use in the Asymmetric Addition of Diethylzinc to Aldehydes. <i>Heterocycles</i> , 2010 , 80, 1319	0.8	13
218	Ruthenium-catalyzed tertiary amine formation from nitroarenes and alcohols. <i>Organic Letters</i> , 2010 , 12, 4888-91	6.2	71
217	Cross-dehydrogenative coupling reactions of sp3-hybridized C-H bonds. <i>Topics in Current Chemistry</i> , 2010 , 292, 281-302		217
216	Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12212-3	16.4	125
215	Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with alkynes under oxygen. <i>Chemical Communications</i> , 2010 , 46, 4184-6	5.8	129
214	Aldehyde- and ketone-induced tandem decarboxylation-coupling (Csp(3)-Csp) of natural alpha-amino acids and alkynes. <i>Journal of Organic Chemistry</i> , 2010 , 75, 783-8	4.2	100
213	Copper-Catalyzed Highly Regioselective Oxidative C?H Bond Amidation of 2-Arylpyridine Derivatives and 1-Methylindoles. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 632-636	5.6	161
212	Palladium-Catalyzed Oxidative sp2 C?H Bond Acylation with Aldehydes. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 1145-1149	5.6	171
211	Copper-Catalyzed Cross-Dehydrogenative Coupling (CDC) of Alkynes and Benzylic C?H Bonds. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 1446-1450	5.6	91

21 0	Copper(II) Triflate-Catalyzed Three-Component Coupling of Aldehydes, Alkynes and Carbamates. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 2437-2440	5.6	14
209	The First Decarbonylative Coupling of Aldehydes and Norbornenes Catalyzed by Rhodium. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 2899-2904	5.6	42
208	Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). <i>Chemistry - A European Journal</i> , 2010 , 16, 126-33	4.8	106
207	Aerobic and electrochemical oxidative cross-dehydrogenative-coupling (CDC) reaction in an imidazolium-based ionic liquid. <i>Chemistry - A European Journal</i> , 2010 , 16, 8162-6	4.8	103
206	Self-catalytic, solvent-free or in/on water protocol: aza-Friedel@rafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. <i>Tetrahedron</i> , 2010 , 66, 1045-1050	2.4	25
205	Catalytic alkylation of benzylic CH bonds with 1,3-dicarbonyl compounds utilizing oxygen as terminal oxidant. <i>Tetrahedron Letters</i> , 2010 , 51, 1172-1175	2	35
204	A novel catalytic decarbonylative Heck-type reaction and conjugate addition of aldehydes to unsaturated carbonyl compounds. <i>Tetrahedron Letters</i> , 2010 , 51, 5486-5489	2	38
203	Ligand-promoted reaction on silver nanoparticles: phosphine-promoted, silver nanoparticle-catalyzed cyclization of 2-(1-hydroxy-3-arylprop-2-ynyl)phenols. <i>Tetrahedron Letters</i> , 2010 , 51, 6722-6725	2	29
202	Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C-H bond functionalization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4106-11	11.5	186
201	Synthesis of Propargylamines by a Copper-Catalyzed Tandem Anti-Markovnikov Hydroamination and Alkyne Addition. <i>Synlett</i> , 2009 , 2009, 937-940	2.2	16
200	An Unusual Peroxide-Mediated Amination of Cycloalkanes with Nitroarenes. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 353-356	5.6	24
199	Ruthenium-Catalyzed Oxidative Homo-Coupling of 2-Arylpyridines. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 2071-2074	5.6	56
198	The Copper-Catalyzed Decarboxylative Coupling of the sp3-Hybridized Carbon Atoms of ⊞-Amino Acids. <i>Angewandte Chemie</i> , 2009 , 121, 806-809	3.6	73
197	Coupling of nitrogen heteroaromatics and alkanes without transition metals: a new oxidative cross-coupling at C-H/C-H bonds. <i>Chemistry - A European Journal</i> , 2009 , 15, 333-7	4.8	179
196	Copper-catalyzed amine-alkyne-alkyne addition reaction: an efficient method for the synthesis of gamma,delta-alkynyl-beta-amino acid derivatives. <i>Chemistry - A European Journal</i> , 2009 , 15, 11668-74	4.8	24
195	Low-valent indium as a catalyst for the allylation of ketones and N-acylhydrazones. <i>ChemSusChem</i> , 2009 , 2, 205-6	8.3	8
194	The copper-catalyzed decarboxylative coupling of the sp3-hybridized carbon atoms of alpha-amino acids. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 792-5	16.4	266
193	Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air. <i>Tetrahedron Letters</i> , 2009 , 50, 2895-2898	2	101

(2008-2009)

192	Pybox ligand-promoted copper(I)-catalyzed three-component tandem coupling-annulation of terminal alkynes, amines and ortho-alkynylaryl aldehydes. <i>Tetrahedron Letters</i> , 2009 , 50, 6791-6794	2	31
191	Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. <i>Accounts of Chemical Research</i> , 2009 , 42, 335-44	24.3	2261
190	Water-triggered, counter-anion-controlled, and silver-phosphines complex-catalyzed stereoselective cascade alkynylation/cyclization of terminal alkynes with salicylaldehydes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 3378-83	4.2	43
189	Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes. <i>Organic Letters</i> , 2009 , 11, 1171-4	6.2	145
188	Copper-catalyzed aerobic phosphonation of sp3 C-H bonds. Chemical Communications, 2009, 4124-6	5.8	214
187	A novel iron-catalyzed decarboxylative Csp3-Csp2 coupling of proline derivatives and naphthol. <i>Organic Letters</i> , 2009 , 11, 3246-9	6.2	131
186	Separation, recovery and reuse of N-heterocyclic carbene catalysts in transesterification reactions. <i>Chemical Communications</i> , 2009 , 6249-51	5.8	30
185	An olefination via ruthenium-catalyzed decarbonylative addition of aldehydes to terminal alkynes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15092-3	16.4	100
184	Copper-catalyzed oxidative sp3 C-H bond arylation with aryl boronic acids. <i>Organic Letters</i> , 2008 , 10, 3661-3	6.2	170
183	Palladium-catalyzed methylation of aryl C-H bond by using peroxides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2900-1	16.4	209
182	Palladium-catalyzed 1,4-addition of terminal alkynes to unsaturated carbonyl compounds promoted by electron-rich ligands. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 2969-77	3.9	41
181	Substituent effects on ketolinol tautomerization of Ediketones from X-ray structural data and DFT calculations. <i>New Journal of Chemistry</i> , 2008 , 32, 694	3.6	48
180	Green chemistry for chemical synthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 13197-202	11.5	652
179	Gold-catalyzed efficient regioselective addition of arenes to allenes. <i>Canadian Journal of Chemistry</i> , 2008 , 86, 616-620	0.9	19
178	Efficient Synthesis of Dihydrobenzofurans via a Multicomponent Coupling of Salicylaldehydes, Amines, and Alkynes. <i>Synlett</i> , 2008 , 2008, 1897-1901	2.2	6
177	Efficient Direct Alkynylation of Trifluoromethyl Ketones Catalyzed by AgF in Water and Organic Solvents. <i>Synlett</i> , 2008 , 2008, 1571-1573	2.2	4
176	Functionalizing glycine derivatives by direct C-C bond formation. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7075-8	16.4	283
175	Ruthenium-catalyzed oxidative cross-coupling of chelating arenes and cycloalkanes. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6278-82	16.4	228

174	Efficient Preparation of the Isoindoline Framework via a Six Component, Tandem Double A3-Coupling and [2+2+2] Cycloaddition Reaction. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 370-374	5.6	69
173	Copper-Catalyzed Four-Component Coupling between Aldehydes, Amines, Alkynes, and Carbon Dioxide. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 1503-1506	5.6	121
172	Efficient Synthesis of ILFAlkynyl-Famino Acid Derivatives by a New Copper-Catalyzed Amine-Alkyne-Alkyne Addition Reaction. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 2226-2230	5.6	27
171	Functionalizing Glycine Derivatives by Direct C?C Bond Formation. <i>Angewandte Chemie</i> , 2008 , 120, 7183	3 <i>-3</i> .486	86
170	Ruthenium-Catalyzed Oxidative Cross-Coupling of Chelating Arenes and Cycloalkanes. <i>Angewandte Chemie</i> , 2008 , 120, 6374-6378	3.6	65
169	Gold-catalyzed reactions of Cℍ bonds. <i>Tetrahedron</i> , 2008 , 64, 4917-4938	2.4	358
168	Synthesis of a new type of chiral N,P- and N,O-ligands. <i>Tetrahedron Letters</i> , 2008 , 49, 668-671	2	21
167	Peroxide-mediated efficient addition of cycloalkanes to imines. <i>Tetrahedron Letters</i> , 2008 , 49, 5601-560)4	20
166	Fluorous tagging: an enabling isolation technique for indium-mediated allylation reactions in water. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 3589-91	3.9	13
165	Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 435-7	3.9	42
164	Conversion of carbon dioxide and olefins into cyclic carbonates in water. <i>Green Chemistry</i> , 2007 , 9, 213-	215	140
163	Gold(III)-catalyzed double hydroamination of o-alkynylaniline with terminal alkynes leading to N-vinylindoles. <i>Organic Letters</i> , 2007 , 9, 627-30	6.2	203
162	Gold(I)-catalyzed annulation of salicylaldehydes and aryl acetylenes as an expedient route to isoflavanones. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1117-9	16.4	78
161	FeCl2-catalyzed selective CC bond formation by oxidative activation of a benzylic CH bond. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6505-7	16.4	319
160	Gold(I)-Catalyzed Annulation of Salicylaldehydes and Aryl Acetylenes as an Expedient Route to Isoflavanones. <i>Angewandte Chemie</i> , 2007 , 119, 1135-1137	3.6	23
159	FeCl2-Catalyzed Selective C?C Bond Formation by Oxidative Activation of a Benzylic C?H Bond. <i>Angewandte Chemie</i> , 2007 , 119, 6625-6627	3.6	106
158	Highly Efficient Direct Alkylation of Activated Methylene by Cycloalkanes. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 4654-4657	3.2	136
157	Synthesis of a new chiral amino phosphine ligand and its application in the asymmetric allylic alkylation (AAA) reaction. <i>Tetrahedron: Asymmetry</i> , 2007 , 18, 1043-1047		20

(2006-2007)

156	Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. <i>Tetrahedron Letters</i> , 2007 , 48, 1033-1035	2	108
155	Rapid syntheses of (\boxplus)-pterocarpans and isoflavones via the gold-catalyzed annulation of aldehydes and alkynes. <i>Tetrahedron Letters</i> , 2007 , 48, 8343-8346	2	27
154	Reactions of C-H bonds in water. <i>Chemical Reviews</i> , 2007 , 107, 2546-62	68.1	573
153	Copper catalyzed oxidative alkylation of sp3 CH bond adjacent to a nitrogen atom using molecular oxygen in water. <i>Green Chemistry</i> , 2007 , 9, 1047	10	224
152	Highly Efficient Addition of Activated Methylene Compounds to Alkenes Catalyzed by Gold and Silver 2007 , 222-232		
151	2007,		159
150	Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1949-52	16.4	255
149	On Water Promoted Direct Coupling of Indoles with 1,4-Benzoquinones without Catalyst. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 869-873	3.2	78
148	Highly Efficient Cross-Dehydrogenative-Coupling between Ethers and Active Methylene Compounds. <i>Angewandte Chemie</i> , 2006 , 118, 1983-1986	3.6	97
147	Synthesis of Aryl-Substituted 1,4-Benzoquinone via Water-Promoted and In(OTf)3-Catalyzed in situ Conjugate Addition-Dehydrogenation of Aromatic Compounds to 1,4-Benzoquinone in Water. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 229-235	5.6	53
146	Catalyzed Reactions of Alkynes in Water. Advanced Synthesis and Catalysis, 2006, 348, 1459-1484	5.6	113
145	Diastereoselective Synthesis of ⊞-Oxyamines via Gold-, Silver- and Copper-Catalyzed, Three-Component Couplings of ⊞-Oxyaldehydes, Alkynes, and Amines in Water. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 1528-1532	5.6	103
144	Highly efficient gold-catalyzed atom-economical annulation of phenols with dienes. <i>Organic Letters</i> , 2006 , 8, 2397-9	6.2	95
143	Water-triggered and gold(I)-catalyzed cascade addition/cyclization of terminal alkynes with ortho-alkynylaryl aldehyde. <i>Organic Letters</i> , 2006 , 8, 1953-5	6.2	168
142	Cu-catalyzed cross-dehydrogenative coupling: a versatile strategy for C-C bond formations via the oxidative activation of sp(3) C-H bonds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8928-33	11.5	515
141	DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4242-3	16.4	351
140	Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. <i>Journal of the American Chemical Society</i> , 2006 , 128, 13064-5	16.4	384
139	Catalytic allylic alkylation via the cross-dehydrogenative-coupling reaction between allylic sp3 C-H and methylenic sp3 C-H bonds. <i>Journal of the American Chemical Society</i> , 2006 , 128, 56-7	16.4	232

138	Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. <i>Pure and Applied Chemistry</i> , 2006 , 78, 935-945	2.1	217
137	Highly stereoselective oxidative esterification of aldehydes with beta-dicarbonyl compounds. <i>Journal of Organic Chemistry</i> , 2006 , 71, 6266-8	4.2	90
136	Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 590-597		142
135	Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions. <i>Tetrahedron Letters</i> , 2006 , 47, 13-17	2	90
134	Solvent-free direct aza-Friedel@rafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. <i>Tetrahedron Letters</i> , 2006 , 47, 6791-6794	2	29
133	Organic chemistry in water. <i>Chemical Society Reviews</i> , 2006 , 35, 68-82	58.5	1088
132	Highly efficient three-component synthesis of beta-lactams from N-methylhydroxylamine, aldehydes, and phenylacetylene. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 203-9	4.5	20
131	Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. <i>Chemical Reviews</i> , 2005 , 105, 3095-165	68.1	1999
130	Efficient Trost's I-addition catalyzed by reusable polymer-supported triphenylphosphine in aqueous media. <i>Green Chemistry</i> , 2005 , 7, 571	10	42
129	Water-promoted direct aerobic oxidation of enol silyl ether to ⊞-hydroxyl ketones without catalyst. <i>Green Chemistry</i> , 2005 , 7, 61-63	10	22
128	Gold- and silver-catalyzed highly regioselective addition of active methylenes to dienes, triene, and cyclic enol ethers. <i>Organic Letters</i> , 2005 , 7, 673-5	6.2	111
127	An annulation toward fused bicyclolactones. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17184	ŀ-5 6.4	38
126	Highly efficient copper-catalyzed nitro-Mannich type reaction: cross-dehydrogenative-coupling between sp3 C-H bond and sp3 C-H bond. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3672-3	16.4	477
125	Highly efficient, reversible addition of activated methylene compounds to styrene derivatives catalyzed by silver catalysts. <i>Journal of Organic Chemistry</i> , 2005 , 70, 5752-5	4.2	67
124	Phosphine-triggered complete chemo-switch: from efficient aldehyde-alkyne-amine coupling to efficient aldehyde-alkyne coupling in water. <i>Organic Letters</i> , 2005 , 7, 4395-8	6.2	122
123	A silver-catalyzed domino route toward 1,2-dihydroquinoline derivatives from simple anilines and alkynes. <i>Organic Letters</i> , 2005 , 7, 2675-8	6.2	149
122	CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C-H and sp2 C-H bonds. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6968-9	16.4	447
121	Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 3173-3176	3.2	161

(2004-2005)

1	120	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256	5.6	54	
-	119	Gold-Catalyzed Coupling of Alkynes and Acyl Iminiums. <i>Letters in Organic Chemistry</i> , 2005 , 2, 410-414	0.6	24	
-	118	Catalytic Reactions of Industrial Importance in Aqueous Media 2005 , 591-608		O	
-	117	A One-Pot, Rhodium-Catalyzed Hydrostannylation-Conjugate Addition in Air and Water. <i>Letters in Organic Chemistry</i> , 2004 , 1, 122-124	0.6	4	
1	116	The Development of A3-Coupling (Aldehyde-Alkyne-Amine) and AA3-Coupling (Asymmetric Aldehyde-Alkyne-Amine). <i>Synlett</i> , 2004 , 2004, 1472-1483	2.2	37	
-	115	Cu(l)-catalyzed direct addition and asymmetric addition of terminal alkynes to imines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 5749-54	11.5	190	
1	114	Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257	4.3	33	
1	113	Microwave-assisted Cu (I) Catalyzed Solvent-free Three Component Coupling of Aldehyde, Alkyne and Amine. <i>QSAR and Combinatorial Science</i> , 2004 , 23, 891-894		42	
-	112	Three-component coupling of aldehyde, alkyne, and amine catalyzed by silver in ionic liquid. <i>Tetrahedron Letters</i> , 2004 , 45, 2443-2446	2	159	
-	111	Facile and selective copperpalladium catalyzed addition of terminal alkynes to activated alkynes in water. <i>Tetrahedron Letters</i> , 2004 , 45, 2771-2774	2	61	
1	110	Microwave-assisted direct addition of cycloethers to alkynes. <i>Tetrahedron Letters</i> , 2004 , 45, 7581-7584	2	33	
-	109	A highly efficient gold/silver-catalyzed addition of arenes to imines. <i>Chemical Communications</i> , 2004 , 1930-1	5.8	62	
1	108	The first palladium-catalyzed 1,4-addition of terminal alkynes to conjugated enones. <i>Chemical Communications</i> , 2004 , 2362-4	5.8	55	
-	107	Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in water. <i>Chemical Communications</i> , 2004 , 394-5	5.8	82	
5	106	A remarkably efficient coupling of acid chlorides with alkynes in water. <i>Organic Letters</i> , 2004 , 6, 3151-3	6.2	125	
-	105	Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom. <i>Organic Letters</i> , 2004 , 6, 4997-9	6.2	332	
-	104	Highly efficient addition of activated methylene compounds to alkenes catalyzed by gold and silver. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6884-5	16.4	195	
-	103	CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11810-1	16.4	563	

102	Aldol- and Mannich-type reactions via in situ olefin migration in ionic liquid. Organic Letters, 2003, 5, 65	7-60	82
101	Ruthenium-Catalyzed Tandem Olefin Migration/Aldol and Mannich-Type Reactions in Water and Protic Solvents. <i>European Journal of Organic Chemistry</i> , 2003 , 2003, 998-1003	3.2	30
100	Befreite Buzuki-Reaktion: Kupplung in Wasser bei hoher Temperatur ohne Bergangsmetallreagens. <i>Angewandte Chemie</i> , 2003 , 115, 5004-5006	3.6	10
99	Suzuki reaction takes a "naked hot bath": coupling in high-temperature water without transition metals. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4856-8	16.4	57
98	InCl3-catalyzed reaction of aromatic amines with cyclic hemiacetals in water: facile synthesis 1,2,3,4-tetrahydroquinoline derivatives. <i>Tetrahedron Letters</i> , 2003 , 44, 153-156	2	35
97	Indium-mediated nucleophilic substitution reaction of ⊞unsaturated ⊞-methoxypiperidine derivative in water. <i>Tetrahedron Letters</i> , 2003 , 44, 5519-5522	2	15
96	A highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in water. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9584-5	16.4	569
95	The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. <i>Organic Letters</i> , 2003 , 5, 4473-5	6.2	400
94	The Barbier-Grignard-type carbonyl alkylation using unactivated alkyl halides in water. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4062-3	16.4	64
93	Domino reaction of anilines with 3,4-dihydro-2H-pyran catalyzed by cation-exchange resin in water: an efficient synthesis of 1,2,3,4-tetrahydroquinoline derivatives. <i>Green Chemistry</i> , 2003 , 5, 627	10	27
92	A novel palladium-catalyzed coupling of epoxides with allyl bromide mediated by indium(I) chloride: a cascade epoxide rearrangement-carbonyl allylation. <i>Chemical Communications</i> , 2003 , 2318-9	5.8	18
91	A highly regio- and stereoselective transition metal-catalyzed hydrosilylation of terminal alkynes under ambient conditions of air, water, and room temperature. <i>Chemical Communications</i> , 2003 , 1668	5.8	53
90	Direct formation of 2,4-disubstituted tetrahydropyranols in water mediated by an acidic solid resin. <i>Green Chemistry</i> , 2003 , 5, 80-81	10	7
89	Carbon-Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling of Aryl Halides in Air and Water. <i>Advanced Synthesis and Catalysis</i> , 2002 , 344, 399-405	5.6	41
88	Palladium-catalyzed coupling of aryl halides with arylhalosilanes in air and water. <i>Tetrahedron Letters</i> , 2002 , 43, 403-405	2	44
87	A highly stereoselective, novel coupling reaction between alkynes and aldehydes. <i>Tetrahedron Letters</i> , 2002 , 43, 1613-1615	2	81
86	Aldol reaction via in situ olefin migration in water. <i>Tetrahedron Letters</i> , 2002 , 43, 3589-3591	2	28
85	Direct formation of tetrahydropyranols via catalysis in ionic liquid. <i>Tetrahedron Letters</i> , 2002 , 43, 4993-	4 <u>9</u> 96	42

84	Gallium-mediated allylation of carbonyl compounds in water. <i>Tetrahedron Letters</i> , 2002 , 43, 5097-5099	2	55
83	Cu(I)Br mediated coupling of alkynes with N-acylimine and N-acyliminium ions in water. <i>Tetrahedron Letters</i> , 2002 , 43, 5731-5733	2	91
82	Rhodium-catalyzed reactions of arylbismuth and aryllead reagents with a chiral glyoxylate hydrate in air and water: water-promoted diastereoselectivity enhancement. <i>Tetrahedron Letters</i> , 2002 , 43, 778	39 - 7791	16
81	InCl(3)-catalyzed domino reaction of aromatic amines with cyclic enol ethers in water: a highly efficient synthesis of new 1,2,3,4-tetrahydroquinoline derivatives. <i>Journal of Organic Chemistry</i> , 2002 , 67, 3969-71	4.2	97
80	Organic Reactions in Water and Other Alternative Media: Metal-Mediated Carbontarbon Bond Formations. ACS Symposium Series, 2002, 178-190	0.4	4
79	Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper(I)pybox complex in water and in toluene. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5638-9	16.4	448
78	Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling Fluorescence Enhancement (SAFE). <i>Journal of Physical Chemistry B</i> , 2002 , 106, 833-843	3.4	83
77	Highly efficient Grignard-type imine additions via C-H activation in water and under solvent-free conditions. <i>Chemical Communications</i> , 2002 , 268-9	5.8	233
76	Grignard type reaction via C⊞ bond activation in water. <i>Green Chemistry</i> , 2002 , 4, 39-41	10	95
75	Developing metal-mediated and catalyzed reactions in air and water. <i>Green Chemistry</i> , 2002 , 4, 1-4	10	32
75 74	Developing metal-mediated and catalyzed reactions in air and water. <i>Green Chemistry</i> , 2002 , 4, 1-4 Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. <i>Chemical Communications</i> , 2002 , 2440-1	5.8	32
	Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in		
74	Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. <i>Chemical Communications</i> , 2002 , 2440-1 Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric	5.8	32
74 73	Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. <i>Chemical Communications</i> , 2002 , 2440-1 Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric Mukaiyama aldol reactions. <i>Chemical Communications</i> , 2002 , 2994-5 Quasi-nature catalysis: developing C-C bond formations catalyzed by late transition metals in air	5.8 5.8	32 40
74 73 72	Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. <i>Chemical Communications</i> , 2002 , 2440-1 Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric Mukaiyama aldol reactions. <i>Chemical Communications</i> , 2002 , 2994-5 Quasi-nature catalysis: developing C-C bond formations catalyzed by late transition metals in air and water. <i>Accounts of Chemical Research</i> , 2002 , 35, 533-8 Quasi-nature catalysis. Rhodium-catalyzed CIC bond formation in air and water. <i>Pure and Applied</i>	5.8 5.8 24.3	32 40 209
74 73 72 71	Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. <i>Chemical Communications</i> , 2002 , 2440-1 Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric Mukaiyama aldol reactions. <i>Chemical Communications</i> , 2002 , 2994-5 Quasi-nature catalysis: developing C-C bond formations catalyzed by late transition metals in air and water. <i>Accounts of Chemical Research</i> , 2002 , 35, 533-8 Quasi-nature catalysis. Rhodium-catalyzed CIC bond formation in air and water. <i>Pure and Applied Chemistry</i> , 2001 , 73, 1315-1318 Synthesis of tetrahydropyran derivatives via a novel indium trichloride mediated cross-cyclization	5.8 5.8 24.3	32 40 209
74 73 72 71 70	Synthesis of alpha-amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. <i>Chemical Communications</i> , 2002 , 2440-1 Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric Mukaiyama aldol reactions. <i>Chemical Communications</i> , 2002 , 2994-5 Quasi-nature catalysis: developing C-C bond formations catalyzed by late transition metals in air and water. <i>Accounts of Chemical Research</i> , 2002 , 35, 533-8 Quasi-nature catalysis. Rhodium-catalyzed CIC bond formation in air and water. <i>Pure and Applied Chemistry</i> , 2001 , 73, 1315-1318 Synthesis of tetrahydropyran derivatives via a novel indium trichloride mediated cross-cyclization between epoxides and homoallyl alcohols. <i>Tetrahedron Letters</i> , 2001 , 42, 793-796 Rhodium catalyzed conjugated addition of unsaturated carbonyl compounds by triphenylbismuth in	5.8 5.8 24.3 2.1	32 40 209 9

66	Rhodium-Catalyzed Conjugated Addition of Aryllead Reagents to <code>\(\beta \). EUnsaturated Carbonyl Compounds in Air and Water. \(\sumsymbol{Synlett} \), 2001, 1470-1472</code>	2.2	22
65	Novel synthesis of alpha-amino acids via catalysis in air and water. <i>Organic Letters</i> , 2001 , 3, 2037-9	6.2	45
64	Conjugate addition of arylsilanes to unsaturated carbonyl compounds catalyzed by rhodium in air and water. <i>Chemical Communications</i> , 2001 , 2348-9	5.8	57
63	Remarkable electronic effect on rhodium-catalyzed carbonyl additions and conjugated additions with arylmetallic reagents. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7451-2	16.4	85
62	Diastereoselective synthesis of polysubstituted tetrahydropyrans and thiacyclohexanes via indium trichloride mediated cyclizations. <i>Journal of Organic Chemistry</i> , 2001 , 66, 739-47	4.2	100
61	Synthesis and Study of A Molecular Fluorescent Chemosensor For Potassium. <i>European Journal of Organic Chemistry</i> , 2000 , 2000, 387-389	3.2	14
60	A Fluorescent 18-Crown-6 Based Luminescence Sensor for Lanthanide Ions. <i>Tetrahedron</i> , 2000 , 56, 704.	5 <i>-₹.</i> ₽49	48
59	Calix[6]arene derivatives bearing sulfonate and alkyl groups as surfactants in Sc(OTf)3-catalyzed Mukaiyama aldol reactions in water. <i>Tetrahedron Letters</i> , 2000 , 41, 2529-2532	2	37
58	Synthesis of amino acids via a three-component reaction of phenols, glyoxylates and amines. <i>Tetrahedron Letters</i> , 2000 , 41, 6715-6719	2	30
57	Synthesis of ⊞-amino ⊡lactone via a novel tandem three-component reaction of alkenes, glyoxylates and amines. <i>Tetrahedron Letters</i> , 2000 , 41, 9747-9751	2	9
56	Diastereoselective synthesis of multisubstituted thiacyclohexanes via cationBlefin cyclizations. <i>Tetrahedron Letters</i> , 2000 , 41, 1321-1325	2	20
55	Diastereoselective Synthesis of 2,4-Disubstituted Tetrahydropyranols and Ethers via a Prins-Type Cyclization Catalyzed by Scandium Triflate. <i>Tetrahedron</i> , 2000 , 56, 2403-2411	2.4	51
54	The effect of crown-ether on the palladium-catalyzed Ullmann-type coupling mediated by zinc in air and water. <i>Tetrahedron Letters</i> , 2000 , 41, 4831-4834	2	48
53	The Greening of a Fundamental Reaction: Metal-Mediated Reactions in Water. <i>ACS Symposium Series</i> , 2000 , 74-86	0.4	1
52	Water as Solvent for Organic and Material Synthesis. ACS Symposium Series, 2000, 62-73	0.4	2
51	A direct retro-barbier fragmentation. <i>Journal of Organic Chemistry</i> , 2000 , 65, 5831-3	4.2	29
50	A novel caesium selective fluorescent chemosensor. <i>Chemical Communications</i> , 2000 , 695-696	5.8	33
49	Grignard-Type Carbonyl Phenylation in Water and under an Air Atmosphere. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9538-9539	16.4	64

48	Eight-Membered Thiocycloether via Indium-Mediated Ring Enlargement. Synlett, 1999 , 1999, 735-736	2.2	6
47	Indium-Trichloride Mediated Synthesis of 4,4-Dichlorotetrahydropyrans. <i>Synlett</i> , 1999 , 1999, 717-718	2.2	21
46	IN AQUA SYNTHESIS OF A HIGH MOLECULAR WEIGHT ARYLETHYNYLENE POLYMER EXHIBITING REVERSIBLE HYDROGEL PROPERTIES. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1999 , 36, 971-980	2.2	1
45	Highly effective synthesis of 4-halo-tetrahydropyrans via a highly diastereoselective in situ Prins-type cyclization reaction. <i>Tetrahedron Letters</i> , 1999 , 40, 1627-1630	2	76
44	Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. <i>Tetrahedron</i> , 1999 , 55, 11149-11176	2.4	455
43	A Novel Stereoselective Cyclization to Functionalized Dihydropyrans. <i>Organic Letters</i> , 1999 , 1, 993-995	6.2	89
42	Aldehyde allylation. in liquid carbon dioxide. <i>Green Chemistry</i> , 1999 , 1, 265-268	10	7
41	Scandium triflate catalyzed in situ Prins-type cyclization: formations of 4-tetrahydropyranols and ethers. <i>Chemical Communications</i> , 1999 , 291-292	5.8	57
40	Magnesium-Mediated Carbon-Carbon Bond Formation in Aqueous Media: Barbier-Grignard Allylation and Pinacol Coupling of Aldehydes. <i>Journal of Organic Chemistry</i> , 1999 , 64, 3230-3236	4.2	113
39	Carbontarbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air. <i>Organic Letters</i> , 1999 , 1, 1133-1135	6.2	98
38	A Highly Selective Fluorescent Chemosensor for K+ from a Bis-15-Crown-5 Derivative. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5599-5600	16.4	96
37	Carbon©arbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air. <i>Organic Letters</i> , 1999 , 1, 1687-1687	6.2	2
36	Metal-mediated two-atom carbocycle enlargement in aqueous medium. <i>Tetrahedron</i> , 1998 , 54, 2347-23	624 4	33
35	Ruthenium-catalyzed isomerization of homoallylic alcohols in water. <i>Tetrahedron</i> , 1998 , 54, 5129-5142	2.4	35
34	Model studies of (+)-bergenin: A convenient formation of aryl 🛭 actones. <i>Tetrahedron Letters</i> , 1998 , 39, 6837-6840	2	13
33	Stepwise synthesis and characterization of oligomers based on 1,1?-binaphthol with 3,3?-acetylene spacer. <i>Tetrahedron: Asymmetry</i> , 1998 , 9, 3693-3707		25
32	Metal-Mediated Barbier-Type Carbonyl Allylation Under Solvent-Free Conditions. <i>Synthetic Communications</i> , 1998 , 28, 2999-3009	1.7	35
31	In aqua synthesis of a high molecular weight arylethynylene polymer with reversible hydrogel properties. <i>Chemical Communications</i> , 1998 , 1351-1352	5.8	11

30	Regio- and Diastereoselective Allenylation of Aldehydes in Aqueous Media: Total Synthesis of (+)-Goniofufurone(1). <i>Journal of Organic Chemistry</i> , 1998 , 63, 7472-7480	4.2	70
29	Mono-Alkylation of Diols Through Ruthenium-Catalyzed Reaction with Homoallyl Alcohols. <i>Synthetic Communications</i> , 1998 , 28, 507-515	1.7	10
28	Manganese-Mediated Carbon-Carbon Bond Formation in Aqueous Media: Chemoselective Allylation and Pinacol Coupling of Aryl Aldehydes. <i>Journal of Organic Chemistry</i> , 1998 , 63, 7498-7504	4.2	64
27	Magnesium in water: simple and effective for pinacol-coupling. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1998 , 3131-3132		19
26	Enantiomeric discrimination of chiral amines with new fluorescent chemosensors. <i>Chemical Communications</i> , 1998 , 1747-1748	5.8	23
25	Indium-mediated highly diastereoselective allenylation in aqueous medium: total synthesis of (+)-goniofufurone. <i>Chemical Communications</i> , 1998 , 449-450	5.8	27
24	Unexpected Barbier G rignard Allylation of Aldehydes with Magnesium in Water. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9102-9103	16.4	64
23	Palladium catalysed polymerization of aryl diodides with acetylenegas in aqueous medium: a novel synthesis of areneethynylene polymers andoligomers. <i>Chemical Communications</i> , 1997 , 1569-1570	5.8	34
22	Manganese-Mediated Reactions in Aqueous Media: ©Chemoselective Allylation and Pinacol Coupling of Aryl Aldehydes. <i>Journal of Organic Chemistry</i> , 1997 , 62, 8632-8633	4.2	65
21	Highly Efficient Palladium-Catalyzed Coupling of Acetylene Gas with Aryl Iodides in Aqueous Medium. <i>Organic Process Research and Development</i> , 1997 , 1, 325-327	3.9	21
20	Indium mediated reactions in water: Synthesis of Ehydroxyl esters. <i>Tetrahedron Letters</i> , 1997 , 38, 4731-4	47234	20
19	Indium and zinc mediated one-atom carbocycle enlargement in water. <i>Tetrahedron Letters</i> , 1997 , 38, 4735-4736	2	28
18	Novel Carbocyle Enlargement in Aqueous Medium. <i>Journal of the American Chemical Society</i> , 1996 , 118, 4216-4217	16.4	62
17	Aqueous Barbier-Grignard type reaction: Scope, mechanism, and synthetic applications. <i>Tetrahedron</i> , 1996 , 52, 5643-5668	2.4	408
16	Synthesis of a bis-(binaphthol). <i>Tetrahedron Letters</i> , 1996 , 37, 4459-4462	2	14
15	Trimethylenemethane dianion equivalent in aqueous medium. <i>Tetrahedron Letters</i> , 1995 , 36, 517-518	2	29
14	Highly efficient carbonyl allylation of 1,3-dicarbonyl compounds in aqueous medium. <i>Tetrahedron Letters</i> , 1995 , 36, 2721-2724	2	36
13	Reshuffling of Functionalities Catalyzed by a Ruthenium Complex in Water. <i>Journal of the American Chemical Society</i> , 1995 , 117, 12867-12868	16.4	37

LIST OF PUBLICATIONS

12	Preparation of Dienylstannanes Via Pd Catalyzed Regio- and Stereocontrolled Addition Reactions. <i>Synthesis</i> , 1994 , 1994, 1267-1271	2.9	43
11	Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10819-10820	16.4	177
10	Novel "Umpolung" in C-C Bond Formation Catalyzed by Triphenylphosphine. <i>Journal of the American Chemical Society</i> , 1994 , 116, 3167-3168	16.4	183
9	A concise chemical synthesis of (+)-3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 747		109
8	Synthesis of (Z)-3-dodecenolide, the main aggregation pheromone from the flat grain beetle, Cryptolestes Pusillus Schlerr. <i>Chinese Journal of Chemistry</i> , 1989 , 7, 407-411		1
7	Asymmetric Synthesis Based on Catalytic Activation of C?H Bonds and C?C Bonds129-152		
6	Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative CII Cross-Couplings via H2 Release. <i>ACS Catalysis</i> ,14148-14158	13.1	8
5	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. <i>Angewandte Chemie</i> ,e20	03/16/27	7760
4	CarbonDarbon bond formation and green chemistry: one dream and 30 years hence. <i>Canadian Journal of Chemistry</i> ,1-6	0.9	
3	Light-driven MPV-type reduction of aryl ketones/aldehydes to alcohols with isopropanol under mild conditions. <i>Green Chemistry</i> ,	10	3
2	Base-Promoted Catalyst-Free Regioselective Hydroacylation of Styrenes with Hydrazones via Carbanion Addition. <i>CCS Chemistry</i> ,1-10	7.2	1
1	Photocatalytic C(sp3) radical generation via C-H, C-C, and C-X bond cleavage. <i>Chemical Science</i> ,	9.4	7