Chao-Jun Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/4243861/chao-jun-li-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,628 180 497 97 h-index g-index citations papers 8.2 8.27 42,372 731 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
497	Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. <i>Accounts of Chemical Research</i> , 2009 , 42, 335-44	24.3	2261
496	Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. <i>Chemical Reviews</i> , 2005 , 105, 3095-165	68.1	1999
495	The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 74-100	16.4	1464
494	Organic chemistry in water. Chemical Society Reviews, 2006, 35, 68-82	58.5	1088
493	Green chemistry oriented organic synthesis in water. <i>Chemical Society Reviews</i> , 2012 , 41, 1415-27	58.5	836
492	Green chemistry for chemical synthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 13197-202	11.5	652
491	Reactions of C-H bonds in water. <i>Chemical Reviews</i> , 2007 , 107, 2546-62	68.1	573
490	A highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in water. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9584-5	16.4	569
489	CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11810-1	16.4	563
488	Cu-catalyzed cross-dehydrogenative coupling: a versatile strategy for C-C bond formations via the oxidative activation of sp(3) C-H bonds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8928-33	11.5	515
487	Highly efficient copper-catalyzed nitro-Mannich type reaction: cross-dehydrogenative-coupling between sp3 C-H bond and sp3 C-H bond. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3672-3	16.4	477
486	Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. <i>Tetrahedron</i> , 1999 , 55, 11149-11176	2.4	455
485	Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper(I)pybox complex in water and in toluene. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5638-9	16.4	448
484	CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C-H and sp2 C-H bonds. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6968-9	16.4	447
483	Aqueous Barbier-Grignard type reaction: Scope, mechanism, and synthetic applications. <i>Tetrahedron</i> , 1996 , 52, 5643-5668	2.4	408
482	The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. <i>Organic Letters</i> , 2003 , 5, 4473-5	6.2	400
481	Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. <i>Journal of the American Chemical Society</i> , 2006 , 128, 13064-5	16.4	384

(2009-2014)

480	Dehydrierende Kreuzkupplungen von C-H-Bindungen: vielseitige Verfahren zur Bildung von C-C-Bindungen. <i>Angewandte Chemie</i> , 2014 , 126, 76-103	3.6	370	
479	Gold-catalyzed reactions of C⊞ bonds. <i>Tetrahedron</i> , 2008 , 64, 4917-4938	2.4	358	
478	DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4242-3	16.4	351	
477	Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom. <i>Organic Letters</i> , 2004 , 6, 4997-9	6.2	332	
476	The development of catalytic nucleophilic additions of terminal alkynes in water. <i>Accounts of Chemical Research</i> , 2010 , 43, 581-90	24.3	330	
475	FeCl2-catalyzed selective CC bond formation by oxidative activation of a benzylic CH bond. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6505-7	16.4	319	
474	Functionalizing glycine derivatives by direct C-C bond formation. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7075-8	16.4	283	
473	Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. <i>Green Chemistry</i> , 2010 , 12, 570	10	271	
472	The copper-catalyzed decarboxylative coupling of the sp3-hybridized carbon atoms of alpha-amino acids. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 792-5	16.4	266	
471	Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1949-52	16.4	255	
470	Highly efficient Grignard-type imine additions via C-H activation in water and under solvent-free conditions. <i>Chemical Communications</i> , 2002 , 268-9	5.8	233	
469	Catalytic allylic alkylation via the cross-dehydrogenative-coupling reaction between allylic sp3 C-H and methylenic sp3 C-H bonds. <i>Journal of the American Chemical Society</i> , 2006 , 128, 56-7	16.4	232	
468	Ruthenium-catalyzed oxidative cross-coupling of chelating arenes and cycloalkanes. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6278-82	16.4	228	
467	Copper catalyzed oxidative alkylation of sp3 CH bond adjacent to a nitrogen atom using molecular oxygen in water. <i>Green Chemistry</i> , 2007 , 9, 1047	10	224	
466	Simple and Clean Photoinduced Aromatic Trifluoromethylation Reaction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5809-12	16.4	218	
465	Cross-dehydrogenative coupling reactions of sp3-hybridized C-H bonds. <i>Topics in Current Chemistry</i> , 2010 , 292, 281-302		217	
464	Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. <i>Pure and Applied Chemistry</i> , 2006 , 78, 935-945	2.1	217	
463	Copper-catalyzed aerobic phosphonation of sp3 C-H bonds. <i>Chemical Communications</i> , 2009 , 4124-6	5.8	214	

462	Palladium-catalyzed methylation of aryl C-H bond by using peroxides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2900-1	16.4	209
461	Quasi-nature catalysis: developing C-C bond formations catalyzed by late transition metals in air and water. <i>Accounts of Chemical Research</i> , 2002 , 35, 533-8	24.3	209
460	Gold(III)-catalyzed double hydroamination of o-alkynylaniline with terminal alkynes leading to N-vinylindoles. <i>Organic Letters</i> , 2007 , 9, 627-30	6.2	203
459	Highly efficient addition of activated methylene compounds to alkenes catalyzed by gold and silver. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6884-5	16.4	195
458	Cu(I)-catalyzed direct addition and asymmetric addition of terminal alkynes to imines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 5749-54	11.5	190
457	Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C-H bond functionalization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4106-11	11.5	186
456	Novel "Umpolung" in C-C Bond Formation Catalyzed by Triphenylphosphine. <i>Journal of the American Chemical Society</i> , 1994 , 116, 3167-3168	16.4	183
455	Coupling of nitrogen heteroaromatics and alkanes without transition metals: a new oxidative cross-coupling at C-H/C-H bonds. <i>Chemistry - A European Journal</i> , 2009 , 15, 333-7	4.8	179
454	Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10819-10820	16.4	177
453	Palladium-Catalyzed Oxidative sp2 C?H Bond Acylation with Aldehydes. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 1145-1149	5.6	171
452	Copper-catalyzed oxidative sp3 C-H bond arylation with aryl boronic acids. <i>Organic Letters</i> , 2008 , 10, 3661-3	6.2	170
45 ¹	Water-triggered and gold(I)-catalyzed cascade addition/cyclization of terminal alkynes with ortho-alkynylaryl aldehyde. <i>Organic Letters</i> , 2006 , 8, 1953-5	6.2	168
450	Magnetic copperIron nanoparticles as simple heterogeneous catalysts for the azideIlkyne click reaction in water. <i>Green Chemistry</i> , 2012 , 14, 622	10	164
449	Fe3O4 nanoparticle-supported copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines. <i>Organic Letters</i> , 2011 , 13, 442-5	6.2	162
448	Copper-Catalyzed Highly Regioselective Oxidative C?H Bond Amidation of 2-Arylpyridine Derivatives and 1-Methylindoles. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 632-636	5.6	161
447	Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 3173-3176	3.2	161
446	An Adventure in Sustainable Cross-Coupling of Phenols and Derivatives via Carbon Dxygen Bond Cleavage. ACS Catalysis, 2017 , 7, 510-519	13.1	160
445	Three-component coupling of aldehyde, alkyne, and amine catalyzed by silver in ionic liquid. <i>Tetrahedron Letters</i> , 2004 , 45, 2443-2446	2	159

444	2007,		159
443	Palladium-catalyzed oxidative sp2 C-H bond acylation with alcohols. <i>Organic Letters</i> , 2011 , 13, 1614-7	6.2	152
442	A silver-catalyzed domino route toward 1,2-dihydroquinoline derivatives from simple anilines and alkynes. <i>Organic Letters</i> , 2005 , 7, 2675-8	6.2	149
441	Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes. <i>Organic Letters</i> , 2009 , 11, 1171-4	6.2	145
440	Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 590-597		142
439	Conversion of carbon dioxide and olefins into cyclic carbonates in water. <i>Green Chemistry</i> , 2007 , 9, 213-2	215	140
438	Grignard-Type Arylation of Aldehydes via a Rhodium-Catalyzed C?H Activation under Mild Conditions. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1269-1273	5.6	136
437	Highly Efficient Direct Alkylation of Activated Methylene by Cycloalkanes. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 4654-4657	3.2	136
436	Photo-induced Metal-Catalyst-Free Aromatic Finkelstein Reaction. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8328-31	16.4	134
435	A novel iron-catalyzed decarboxylative Csp3-Csp2 coupling of proline derivatives and naphthol. <i>Organic Letters</i> , 2009 , 11, 3246-9	6.2	131
435		6.25.8	131
	Organic Letters, 2009, 11, 3246-9 Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with	5.8	
434	Organic Letters, 2009, 11, 3246-9 Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with alkynes under oxygen. <i>Chemical Communications</i> , 2010, 46, 4184-6 Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of	5.8	129
434	Organic Letters, 2009, 11, 3246-9 Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with alkynes under oxygen. <i>Chemical Communications</i> , 2010, 46, 4184-6 Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. <i>Journal of the American Chemical Society</i> , 2010, 132, 12212-3	5.8	129
434 433 432	Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with alkynes under oxygen. <i>Chemical Communications</i> , 2010 , 46, 4184-6 Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12212-3 A remarkably efficient coupling of acid chlorides with alkynes in water. <i>Organic Letters</i> , 2004 , 6, 3151-3 Phosphine-triggered complete chemo-switch: from efficient aldehyde-alkyne-amine coupling to	5.8 16.4 6.2	129 125 125
434 433 432 431	Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with alkynes under oxygen. <i>Chemical Communications</i> , 2010 , 46, 4184-6 Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12212-3 A remarkably efficient coupling of acid chlorides with alkynes in water. <i>Organic Letters</i> , 2004 , 6, 3151-3 Phosphine-triggered complete chemo-switch: from efficient aldehyde-alkyne-amine coupling to efficient aldehyde-alkyne coupling in water. <i>Organic Letters</i> , 2005 , 7, 4395-8 Copper-Catalyzed Four-Component Coupling between Aldehydes, Amines, Alkynes, and Carbon	5.816.46.26.2	129 125 125
434 433 432 431 430	Palladium-catalyzed direct oxidative Heck-Cassar-Sonogashira type alkynylation of indoles with alkynes under oxygen. <i>Chemical Communications</i> , 2010 , 46, 4184-6 Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12212-3 A remarkably efficient coupling of acid chlorides with alkynes in water. <i>Organic Letters</i> , 2004 , 6, 3151-3 Phosphine-triggered complete chemo-switch: from efficient aldehyde-alkyne-amine coupling to efficient aldehyde-alkyne coupling in water. <i>Organic Letters</i> , 2005 , 7, 4395-8 Copper-Catalyzed Four-Component Coupling between Aldehydes, Amines, Alkynes, and Carbon Dioxide. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 1503-1506 Formal Direct Cross-Coupling of Phenols with Amines. <i>Angewandte Chemie - International Edition</i> ,	5.816.46.25.6	129 125 125 122

426	Catalyzed Reactions of Alkynes in Water. Advanced Synthesis and Catalysis, 2006, 348, 1459-1484	5.6	113
425	Magnesium-Mediated Carbon-Carbon Bond Formation in Aqueous Media: Barbier-Grignard Allylation and Pinacol Coupling of Aldehydes. <i>Journal of Organic Chemistry</i> , 1999 , 64, 3230-3236	4.2	113
424	Empowering a transition-metal-free coupling between alkyne and alkyl iodide with light in water. <i>Nature Communications</i> , 2015 , 6, 6526	17.4	111
423	Gold- and silver-catalyzed highly regioselective addition of active methylenes to dienes, triene, and cyclic enol ethers. <i>Organic Letters</i> , 2005 , 7, 673-5	6.2	111
422	Ruthenium-catalyzed para-selective oxidative cross-coupling of arenes and cycloalkanes. <i>Organic Letters</i> , 2011 , 13, 4977-9	6.2	110
421	Direct synthesis of aryl ketones by palladium-catalyzed desulfinative addition of sodium sulfinates to nitriles. <i>Chemistry - A European Journal</i> , 2011 , 17, 7996-9	4.8	110
42 0	Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8621-8627	16.4	109
419	A concise chemical synthesis of (+)-3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 747		109
418	Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with molecular oxygen. <i>Organic Letters</i> , 2012 , 14, 5606-9	6.2	108
417	Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. <i>Tetrahedron Letters</i> , 2007 , 48, 1033-1035	2	108
416	En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. <i>Journal of Organic Chemistry</i> , 2019 , 84, 12705-12721	4.2	107
415	Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). <i>Chemistry - A European Journal</i> , 2010 , 16, 126-33	4.8	106
414	FeCl2-Catalyzed Selective C?C Bond Formation by Oxidative Activation of a Benzylic C?H Bond. <i>Angewandte Chemie</i> , 2007 , 119, 6625-6627	3.6	106
413	Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. <i>Chemical Science</i> , 2015 , 6, 4174-47	19 8	104
412	Aerobic and electrochemical oxidative cross-dehydrogenative-coupling (CDC) reaction in an imidazolium-based ionic liquid. <i>Chemistry - A European Journal</i> , 2010 , 16, 8162-6	4.8	103
411	Diastereoselective Synthesis of ⊞-Oxyamines via Gold-, Silver- and Copper-Catalyzed, Three-Component Couplings of ⊞-Oxyaldehydes, Alkynes, and Amines in Water. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 1528-1532	5.6	103
410	Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air. <i>Tetrahedron Letters</i> , 2009 , 50, 2895-2898	2	101
409	An olefination via ruthenium-catalyzed decarbonylative addition of aldehydes to terminal alkynes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15092-3	16.4	100

(2006-2010)

408	Aldehyde- and ketone-induced tandem decarboxylation-coupling (Csp(3)-Csp) of natural alpha-amino acids and alkynes. <i>Journal of Organic Chemistry</i> , 2010 , 75, 783-8	4.2	100
407	Diastereoselective synthesis of polysubstituted tetrahydropyrans and thiacyclohexanes via indium trichloride mediated cyclizations. <i>Journal of Organic Chemistry</i> , 2001 , 66, 739-47	4.2	100
406	Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). <i>Organic Letters</i> , 2012 , 14, 902-5	6.2	99
405	Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 447-51	3.9	98
404	Rhodium(III)-Catalyzed C(sp2)?H Activation and Electrophilic Amidation with N-Fluorobenzenesulfonimide. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 869-873	5.6	98
403	Carbontarbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air. <i>Organic Letters</i> , 1999 , 1, 1133-1135	6.2	98
402	Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. <i>Nature Chemistry</i> , 2017 , 9, 374-378	17.6	97
401	Palladium-catalyzed Minisci reaction with simple alcohols. <i>Organic Letters</i> , 2011 , 13, 4581-3	6.2	97
400	Highly Efficient Cross-Dehydrogenative-Coupling between Ethers and Active Methylene Compounds. <i>Angewandte Chemie</i> , 2006 , 118, 1983-1986	3.6	97
399	InCl(3)-catalyzed domino reaction of aromatic amines with cyclic enol ethers in water: a highly efficient synthesis of new 1,2,3,4-tetrahydroquinoline derivatives. <i>Journal of Organic Chemistry</i> , 2002 , 67, 3969-71	4.2	97
398	Photoinduced conversion of methane into benzene over GaN nanowires. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7793-6	16.4	96
397	A Highly Selective Fluorescent Chemosensor for K+ from a Bis-15-Crown-5 Derivative. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5599-5600	16.4	96
396	Highly efficient gold-catalyzed atom-economical annulation of phenols with dienes. <i>Organic Letters</i> , 2006 , 8, 2397-9	6.2	95
395	Grignard type reaction via Cℍ bond activation in water. <i>Green Chemistry</i> , 2002 , 4, 39-41	10	95
394	Catalytic aerobic synthesis of aromatic ethers from non-aromatic precursors. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7537-40	16.4	93
393	Copper-Catalyzed Cross-Dehydrogenative Coupling (CDC) of Alkynes and Benzylic C?H Bonds. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 1446-1450	5.6	91
392	Cu(I)Br mediated coupling of alkynes with N-acylimine and N-acyliminium ions in water. <i>Tetrahedron Letters</i> , 2002 , 43, 5731-5733	2	91
391	Highly stereoselective oxidative esterification of aldehydes with beta-dicarbonyl compounds. Journal of Organic Chemistry, 2006 , 71, 6266-8	4.2	90

390	Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions. <i>Tetrahedron Letters</i> , 2006 , 47, 13-17	2	90
389	A Novel Stereoselective Cyclization to Functionalized Dihydropyrans. <i>Organic Letters</i> , 1999 , 1, 993-995	6.2	89
388	A Novel Rhodium-Catalyzed Cascade Cyclization: Direct Synthesis of 3-Substituted Phthalides from Aldehydes and Aromatic Acids. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2933-2938	5.6	88
387	Metal-Free Markovnikov-Type Alkyne Hydration under Mild Conditions. <i>Organic Letters</i> , 2016 , 18, 2184-	76.2	87
386	Functionalizing Glycine Derivatives by Direct C?C Bond Formation. <i>Angewandte Chemie</i> , 2008 , 120, 7183	8 <i>-3</i> .686	86
385	Simple and direct sp3 C-H bond arylation of tetrahydroisoquinolines and isochromans via 2,3-dichloro-5,6-dicyano-1,4-benzoquinone oxidation under mild conditions. <i>Organic Letters</i> , 2013 , 15, 3650-3	6.2	85
384	Remarkable electronic effect on rhodium-catalyzed carbonyl additions and conjugated additions with arylmetallic reagents. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7451-2	16.4	85
383	Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling Fluorescence Enhancement (SAFE). <i>Journal of Physical Chemistry B</i> , 2002 , 106, 833-843	3.4	83
382	Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. <i>Green Chemistry</i> , 2013 , 15, 2141	10	82
381	Rhodium-catalyzed C-H activation and conjugate addition under mild conditions. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 7176-9	3.9	82
380	Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in water. <i>Chemical Communications</i> , 2004 , 394-5	5.8	82
379	Aldol- and Mannich-type reactions via in situ olefin migration in ionic liquid. <i>Organic Letters</i> , 2003 , 5, 657	7-660	82
378	A highly stereoselective, novel coupling reaction between alkynes and aldehydes. <i>Tetrahedron Letters</i> , 2002 , 43, 1613-1615	2	81
377	Gold(I)-catalyzed annulation of salicylaldehydes and aryl acetylenes as an expedient route to isoflavanones. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1117-9	16.4	78
376	On Water Promoted Direct Coupling of Indoles with 1,4-Benzoquinones without Catalyst. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 869-873	3.2	78
375	Synthesis of indene frameworks via rhodium-catalyzed cascade cyclization of aromatic ketone and unsaturated carbonyl compounds. <i>Organic Letters</i> , 2013 , 15, 1476-9	6.2	77
374	On water promoted direct alkynylation of isatins catalyzed by NHC lilver complexes for the efficient synthesis of 3-hydroxy-3-ethynylindolin-2-ones. <i>Green Chemistry</i> , 2011 , 13, 549	10	77
373	Palladium-catalyzed benzothieno[2,3-b]indole formation via dehydrative-dehydrogenative double C-H sulfuration using sulfur powder, indoles and cyclohexanones. <i>Chemical Communications</i> , 2015 , 51, 1031-4	5.8	76

(2005-2001)

372	Rhodium catalyzed conjugated addition of unsaturated carbonyl compounds by triphenylbismuth in aqueous media and under an air atmosphere. <i>Tetrahedron Letters</i> , 2001 , 42, 781-784	2	76
371	Highly effective synthesis of 4-halo-tetrahydropyrans via a highly diastereoselective in situ Prins-type cyclization reaction. <i>Tetrahedron Letters</i> , 1999 , 40, 1627-1630	2	76
370	Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5718-21	16.4	74
369	The Copper-Catalyzed Decarboxylative Coupling of the sp3-Hybridized Carbon Atoms of ⊞-Amino Acids. <i>Angewandte Chemie</i> , 2009 , 121, 806-809	3.6	73
368	En Route to a Practical Primary Alcohol Deoxygenation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5433-40	16.4	73
367	Nitrogen Photofixation over III-Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8701-8705	16.4	72
366	Copper-Catalyzed Oxidative C(sp(3))-H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. <i>Organic Letters</i> , 2015 , 17, 2894-7	6.2	72
365	Catalytic dehydrogenative aromatization: an alternative route to functionalized arenes. <i>Organic Chemistry Frontiers</i> , 2015 , 2, 279-287	5.2	72
364	Ruthenium-catalyzed tertiary amine formation from nitroarenes and alcohols. <i>Organic Letters</i> , 2010 , 12, 4888-91	6.2	71
363	Regio- and Diastereoselective Allenylation of Aldehydes in Aqueous Media: Total Synthesis of (+)-Goniofufurone(1). <i>Journal of Organic Chemistry</i> , 1998 , 63, 7472-7480	4.2	70
362	A Pd(0)-catalyzed direct dehydrative coupling of terminal alkynes with allylic alcohols to access 1,4-enynes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12536-9	16.4	69
361	Efficient Preparation of the Isoindoline Framework via a Six Component, Tandem Double A3-Coupling and [2+2+2] Cycloaddition Reaction. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 370-374	5.6	69
360	Umpolung Addition of Aldehydes to Aryl Imines. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6260-6263	16.4	68
359	Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. <i>Chemical Science</i> , 2019 , 10, 5018-5024	9.4	68
358	Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water-"silver mirror": From stoichiometric to catalytic. <i>Science Advances</i> , 2015 , 1, e15	00030	68
357	Perspectives on green synthesis and catalysis. <i>Green Synthesis and Catalysis</i> , 2020 , 1, 1-11	9.3	68
356	Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3752-3757	16.4	67
355	Highly efficient, reversible addition of activated methylene compounds to styrene derivatives catalyzed by silver catalysts. <i>Journal of Organic Chemistry</i> , 2005 , 70, 5752-5	4.2	67

354	Chemistry Takes a Bath: Reactions in Aqueous Media. Journal of Organic Chemistry, 2018, 83, 7319-7327	2 4.2	65
353	Manganese-Mediated Reactions in Aqueous Media: ©Chemoselective Allylation and Pinacol Coupling of Aryl Aldehydes. <i>Journal of Organic Chemistry</i> , 1997 , 62, 8632-8633	4.2	65
352	Ruthenium-Catalyzed Oxidative Cross-Coupling of Chelating Arenes and Cycloalkanes. <i>Angewandte Chemie</i> , 2008 , 120, 6374-6378	3.6	65
351	The Barbier-Grignard-type carbonyl alkylation using unactivated alkyl halides in water. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4062-3	16.4	64
350	Grignard-Type Carbonyl Phenylation in Water and under an Air Atmosphere. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9538-9539	16.4	64
349	Manganese-Mediated Carbon-Carbon Bond Formation in Aqueous Media: Chemoselective Allylation and Pinacol Coupling of Aryl Aldehydes. <i>Journal of Organic Chemistry</i> , 1998 , 63, 7498-7504	4.2	64
348	Unexpected Barbier G rignard Allylation of Aldehydes with Magnesium in Water. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9102-9103	16.4	64
347	Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10806-10	16.4	64
346	A Rhodium-Catalyzed Cascade Cyclization: Direct Synthesis of N-Substituted Phthalimides from Isocyanates and Benzoic Acids. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 723-728	5.6	63
345	Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1160-1164	8.3	63
344	Rhodium-Catalyzed Aerobic Coupling between Aldehydes and Arenesulfinic Acid Salts: A Novel Synthesis of Aryl Ketones. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1701-1706	5.6	63
343	A highly efficient gold/silver-catalyzed addition of arenes to imines. <i>Chemical Communications</i> , 2004 , 1930-1	5.8	62
342	Novel Carbocyle Enlargement in Aqueous Medium. <i>Journal of the American Chemical Society</i> , 1996 , 118, 4216-4217	16.4	62
341	Facile and selective copperpalladium catalyzed addition of terminal alkynes to activated alkynes in water. <i>Tetrahedron Letters</i> , 2004 , 45, 2771-2774	2	61
340	Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage. <i>Chemical Reviews</i> , 2020 , 120, 10454-10515	68.1	61
339	A convenient synthesis of N-aryl benzamides by rhodium-catalyzed ortho-amidation and decarboxylation of benzoic acids. <i>Chemistry - A European Journal</i> , 2015 , 21, 1900-3	4.8	60
338	Microwave-Assisted Synthesis of Magnetic Carboxymethyl Cellulose-Embedded Agfe3O4 Nanocatalysts for Selective Carbonyl Hydrogenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 965-973	8.3	60
337	Iron-catalyzed arylation of benzoazoles with aromatic aldehydes using oxygen as oxidant. <i>Green Chemistry</i> , 2012 , 14, 1577	10	58

(2011-2014)

336	The Barbier-Grignard-type arylation of aldehydes using unactivated aryl iodides in water. <i>Nature Communications</i> , 2014 , 5, 4254	17.4	57
335	A(3)-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. <i>Beilstein Journal of Organic Chemistry</i> , 2013 , 9, 1388-96	2.5	57
334	Suzuki reaction takes a "naked hot bath": coupling in high-temperature water without transition metals. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4856-8	16.4	57
333	Conjugate addition of arylsilanes to unsaturated carbonyl compounds catalyzed by rhodium in air and water. <i>Chemical Communications</i> , 2001 , 2348-9	5.8	57
332	Scandium triflate catalyzed in situ Prins-type cyclization: formations of 4-tetrahydropyranols and ethers. <i>Chemical Communications</i> , 1999 , 291-292	5.8	57
331	Ruthenium-Catalyzed Oxidative Homo-Coupling of 2-Arylpyridines. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 2071-2074	5.6	56
330	Transition-Metal-Free C-C, C-O, and C-N Cross-Couplings Enabled by Light. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6755-6764	16.4	55
329	Metal-Free Oxidative Coupling: Xanthone Formation via Direct Annulation of 2-Aryloxybenzaldehyde using Tetrabutylammonium Bromide as a Promoter in Aqueous Medium. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2191-2196	5.6	55
328	The first palladium-catalyzed 1,4-addition of terminal alkynes to conjugated enones. <i>Chemical Communications</i> , 2004 , 2362-4	5.8	55
327	Gallium-mediated allylation of carbonyl compounds in water. <i>Tetrahedron Letters</i> , 2002 , 43, 5097-5099	2	55
327 326	Gallium-mediated allylation of carbonyl compounds in water. <i>Tetrahedron Letters</i> , 2002 , 43, 5097-5099 Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256	5.6	55 54
	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with		54
326	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256 Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie - International</i>	5.6	54
326 325	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256 Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6302-6306 Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. <i>Organic</i>	5.6 16.4	54
326 325 324	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256 Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6302-6306 Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. <i>Organic Letters</i> , 2019 , 21, 1301-1305 Dual CH activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross	5.6 16.4 6.2	545353
326 325 324 323	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256 Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6302-6306 Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. <i>Organic Letters</i> , 2019 , 21, 1301-1305 Dual CH activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. <i>Tetrahedron</i> , 2013 , 69, 4436-4444 Synthesis of Aryl-Substituted 1,4-Benzoquinone via Water-Promoted and In(OTf)3-Catalyzed in situ Conjugate Addition-Dehydrogenation of Aromatic Compounds to 1,4-Benzoquinone in Water.	5.6 16.4 6.2	54535353
326 325 324 323 322	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1247-1256 Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6302-6306 Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. <i>Organic Letters</i> , 2019 , 21, 1301-1305 Dual CH activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. <i>Tetrahedron</i> , 2013 , 69, 4436-4444 Synthesis of Aryl-Substituted 1,4-Benzoquinone via Water-Promoted and In(OTf)3-Catalyzed in situ Conjugate Addition-Dehydrogenation of Aromatic Compounds to 1,4-Benzoquinone in Water. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 229-235 A highly regio- and stereoselective transition metal-catalyzed hydrosilylation of terminal alkynes	5.6 16.4 6.2 2.4 5.6	5453535353

318	Synthesis of tetrahydropyran derivatives via a novel indium trichloride mediated cross-cyclization between epoxides and homoallyl alcohols. <i>Tetrahedron Letters</i> , 2001 , 42, 793-796	2	52
317	Diastereoselective Synthesis of 2,4-Disubstituted Tetrahydropyranols and Ethers via a Prins-Type Cyclization Catalyzed by Scandium Triflate. <i>Tetrahedron</i> , 2000 , 56, 2403-2411	2.4	51
316	Silver-Catalyzed Oxidative Coupling of Terminal Aromatic Alkynes and Benzylic Ethers. <i>Heterocycles</i> , 2010 , 82, 555	0.8	48
315	Substituent effects on ketolinol tautomerization of Ediketones from X-ray structural data and DFT calculations. <i>New Journal of Chemistry</i> , 2008 , 32, 694	3.6	48
314	A Fluorescent 18-Crown-6 Based Luminescence Sensor for Lanthanide Ions. <i>Tetrahedron</i> , 2000 , 56, 7045	5 <i>-3</i> .049	48
313	The effect of crown-ether on the palladium-catalyzed Ullmann-type coupling mediated by zinc in air and water. <i>Tetrahedron Letters</i> , 2000 , 41, 4831-4834	2	48
312	Functionalization of cellulose nanocrystal films via Ehiol Ene Etlick reaction. RSC Advances, 2014, 4, 6965	3.7	47
311	Site-specific modification of amino acids and peptides by aldehyde-alkyne-amine coupling under ambient aqueous conditions. <i>Organic Letters</i> , 2012 , 14, 3000-3	6.2	47
310	Radical difluoromethylthiolation of aromatics enabled by visible light. <i>Chemical Science</i> , 2018 , 9, 5781-5	7,846	47
309	Phosphine ligand triggered oxidative decarbonylative homocoupling of aromatic aldehydes: selectively generating biaryls and diarylketones. <i>Chemical Communications</i> , 2011 , 47, 2161-3	5.8	46
308	Novel synthesis of alpha-amino acids via catalysis in air and water. <i>Organic Letters</i> , 2001 , 3, 2037-9	6.2	45
307	Cross-Coupling of Phenol Derivatives with Umpolung Aldehydes Catalyzed by Nickel. <i>ACS Catalysis</i> , 2018 , 8, 4622-4627	13.1	44
306	Fe(III)-Catalyzed Cross-Dehydrogenative Arylation (CDA) between Oxindoles and Arenes under an Air Atmosphere. <i>Chemistry - A European Journal</i> , 2015 , 21, 16744-8	4.8	44
305	Palladium-catalyzed coupling of aryl halides with arylhalosilanes in air and water. <i>Tetrahedron Letters</i> , 2002 , 43, 403-405	2	44
304	Water-triggered, counter-anion-controlled, and silver-phosphines complex-catalyzed stereoselective cascade alkynylation/cyclization of terminal alkynes with salicylaldehydes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 3378-83	4.2	43
303	Preparation of Dienylstannanes Via Pd Catalyzed Regio- and Stereocontrolled Addition Reactions. <i>Synthesis</i> , 1994 , 1994, 1267-1271	2.9	43
302	Direct dehydrogenative alkyl Heck-couplings of vinylarenes with umpolung aldehydes catalyzed by nickel. <i>Nature Communications</i> , 2019 , 10, 715	17.4	42
301	Direct sp3 C-H bond arylation, alkylation, and amidation of tetrahydroisoquinolines mediated by hypervalent iodine(III) under mild conditions. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2189-92	3.9	42

300	Silver-catalyzed hydrogenation of aldehydes in water. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11871-4	16.4	42	
299	The First Decarbonylative Coupling of Aldehydes and Norbornenes Catalyzed by Rhodium. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 2899-2904	5.6	42	
298	Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 435-7	3.9	42	
297	Efficient Trost's 🖟 addition catalyzed by reusable polymer-supported triphenylphosphine in aqueous media. <i>Green Chemistry</i> , 2005 , 7, 571	10	42	
296	Microwave-assisted Cu (I) Catalyzed Solvent-free Three Component Coupling of Aldehyde, Alkyne and Amine. <i>QSAR and Combinatorial Science</i> , 2004 , 23, 891-894		42	
295	Direct formation of tetrahydropyranols via catalysis in ionic liquid. <i>Tetrahedron Letters</i> , 2002 , 43, 4993-4	2 96	42	
294	Ruthenium(ii)-catalyzed olefination carbonyl reductive cross-coupling. <i>Chemical Science</i> , 2017 , 8, 8193-8	19947	41	
293	Direct conversion of phenols into primary anilines with hydrazine catalyzed by palladium. <i>Chemical Science</i> , 2019 , 10, 4775-4781	9.4	41	
292	Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14106-9	16.4	41	
291	Ru-catalyzed decarbonylative addition of aliphatic aldehydes to terminal alkynes. <i>Organic Letters</i> , 2010 , 12, 3176-8	6.2	41	
290	Palladium-catalyzed 1,4-addition of terminal alkynes to unsaturated carbonyl compounds promoted by electron-rich ligands. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 2969-77	3.9	41	
289	Carbon-Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling of Aryl Halides in Air and Water. <i>Advanced Synthesis and Catalysis</i> , 2002 , 344, 399-405	5.6	41	
288	Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16520-16524	16.4	41	
287	Sustainable Synthesis of Magnetic Ruthenium-Coated Iron Nanoparticles and Application in the Catalytic Transfer Hydrogenation of Ketones. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 814-83	263	40	
286	Gold-catalyzed tandem reactions of amide-aldehyde-alkyne coupling and cyclization-synthesis of 2,4,5-trisubstituted oxazoles. <i>Chemical Science</i> , 2015 , 6, 7332-7335	9.4	40	
285	Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric Mukaiyama aldol reactions. <i>Chemical Communications</i> , 2002 , 2994-5	5.8	40	
284	Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. <i>Green Chemistry</i> , 2016 , 18, 129-13.	3 10	39	
283	A complete switch of the directional selectivity in the annulation of 2-hydroxybenzaldehydes with alkynes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13862-5	16.4	39	

282	Recent Synthetic Applications of Catalyst-Free Photochemistry. Synlett, 2017, 28, 2714-2754	2.2	39
281	A novel catalytic decarbonylative Heck-type reaction and conjugate addition of aldehydes to unsaturated carbonyl compounds. <i>Tetrahedron Letters</i> , 2010 , 51, 5486-5489	2	38
280	An annulation toward fused bicyclolactones. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1718	4-5 6.4	38
279	Exploration of New Chemical Reactivities for Sustainable Molecular Transformations. <i>CheM</i> , 2016 , 1, 423-437	16.2	38
278	Nickel-catalyzed cross-coupling of aldehydes with aryl halides via hydrazone intermediates. <i>Chemical Communications</i> , 2018 , 54, 1750-1753	5.8	37
277	Formal Cross-Coupling of Diaryl Ethers with Ammonia by Dual C(Ar) D Bond Cleavages. <i>ACS Catalysis</i> , 2018 , 8, 8873-8878	13.1	37
276	The Development of A3-Coupling (Aldehyde-Alkyne-Amine) and AA3-Coupling (Asymmetric Aldehyde-Alkyne-Amine). <i>Synlett</i> , 2004 , 2004, 1472-1483	2.2	37
275	Calix[6]arene derivatives bearing sulfonate and alkyl groups as surfactants in Sc(OTf)3-catalyzed Mukaiyama aldol reactions in water. <i>Tetrahedron Letters</i> , 2000 , 41, 2529-2532	2	37
274	Reshuffling of Functionalities Catalyzed by a Ruthenium Complex in Water. <i>Journal of the American Chemical Society</i> , 1995 , 117, 12867-12868	16.4	37
273	Phosphorylation of Glycine Derivatives via Copper(I)-Catalyzed Csp3H Bond Functionalization. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 2553-2557	5.6	37
272	Selective CopperN-Heterocyclic Carbene (Copper-NHC)-Catalyzed Aerobic Cleavage of El Lignin Models to Aldehydes. <i>ACS Catalysis</i> , 2017 , 7, 3344-3348	13.1	36
271	FeCl3-Mediated Radical Tandem Reactions of 3-Benzyl-2-oxindoles with Styrene Derivatives for the Stereoselective Synthesis of Spirocyclohexene Oxindoles. <i>Organic Letters</i> , 2016 , 18, 1382-5	6.2	36
270	Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7576-9	16.4	36
269	Quasi-nature catalysis: conjugated addition of unsaturated carbonyl compounds with aryl and vinyltin reagents catalyzed by rhodium in air and water. <i>Tetrahedron Letters</i> , 2001 , 42, 4459-4462	2	36
268	Highly efficient carbonyl allylation of 1,3-dicarbonyl compounds in aqueous medium. <i>Tetrahedron Letters</i> , 1995 , 36, 2721-2724	2	36
267	Two-in-One Strategy for Palladium-Catalyzed C-H Functionalization in Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2859-2863	16.4	36
266	Alkynes as an eco-compatible Bn-callIfunctionality orthogonal to biological conditions in water. <i>Chemical Science</i> , 2011 , 2, 1241-1249	9.4	35
265	Catalytic alkylation of benzylic CH bonds with 1,3-dicarbonyl compounds utilizing oxygen as terminal oxidant. <i>Tetrahedron Letters</i> , 2010 , 51, 1172-1175	2	35

264	Ruthenium-catalyzed isomerization of homoallylic alcohols in water. <i>Tetrahedron</i> , 1998 , 54, 5129-5142	2.4	35
263	Metal-Mediated Barbier-Type Carbonyl Allylation Under Solvent-Free Conditions. <i>Synthetic Communications</i> , 1998 , 28, 2999-3009	1.7	35
262	InCl3-catalyzed reaction of aromatic amines with cyclic hemiacetals in water: facile synthesis 1,2,3,4-tetrahydroquinoline derivatives. <i>Tetrahedron Letters</i> , 2003 , 44, 153-156	2	35
261	Metal-Free and Redox-Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13499-13503	16.4	34
260	Palladium-Catalyzed Synthesis of N-Cyclohexyl Anilines from Phenols with Hydrazine or Hydroxylamine via N-N/O Cleavage. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 3648-3653	5.6	34
259	Palladium catalysed polymerization of aryl diodides with acetylenegas in aqueous medium: a novel synthesis of areneethynylene polymers andoligomers. <i>Chemical Communications</i> , 1997 , 1569-1570	5.8	34
258	NH as traceless mediator for homo- and cross- aryl coupling. <i>Nature Communications</i> , 2018 , 9, 4739	17.4	34
257	Silver(I)-Catalyzed Widely Applicable Aerobic 1,2-Diol Oxidative Cleavage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2616-2620	16.4	33
256	Rearrangement of 2-aryloxybenzaldehydes to 2-hydroxybenzophenones by rhodium-catalyzed cleavage of aryloxy C-O bonds. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8936-9	16.4	33
255	Metal-mediated two-atom carbocycle enlargement in aqueous medium. <i>Tetrahedron</i> , 1998 , 54, 2347-23	364 ₄	33
255 254	Metal-mediated two-atom carbocycle enlargement in aqueous medium. <i>Tetrahedron</i> , 1998 , 54, 2347-23 Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257	4 -3	33
	Water as a reaction medium for clean chemical processes. Clean Technologies and Environmental	4.3	
254	Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257	4.3	33
254 253	Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257 Microwave-assisted direct addition of cycloethers to alkynes. <i>Tetrahedron Letters</i> , 2004 , 45, 7581-7584	4.3	33
254 253 252	Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257 Microwave-assisted direct addition of cycloethers to alkynes. <i>Tetrahedron Letters</i> , 2004 , 45, 7581-7584 A novel caesium selective fluorescent chemosensor. <i>Chemical Communications</i> , 2000 , 695-696 Aromatic Chemistry in the Excited State: Facilitating Metal-Free Substitutions and Cross-Couplings.	4.3	333333
254253252251	Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257 Microwave-assisted direct addition of cycloethers to alkynes. <i>Tetrahedron Letters</i> , 2004 , 45, 7581-7584 A novel caesium selective fluorescent chemosensor. <i>Chemical Communications</i> , 2000 , 695-696 Aromatic Chemistry in the Excited State: Facilitating Metal-Free Substitutions and Cross-Couplings. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1786-1796 Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. <i>Chemical Reviews</i> ,	4·3 2 5.8	33333333
254 253 252 251 250	Water as a reaction medium for clean chemical processes. <i>Clean Technologies and Environmental Policy</i> , 2004 , 6, 250-257 Microwave-assisted direct addition of cycloethers to alkynes. <i>Tetrahedron Letters</i> , 2004 , 45, 7581-7584 A novel caesium selective fluorescent chemosensor. <i>Chemical Communications</i> , 2000 , 695-696 Aromatic Chemistry in the Excited State: Facilitating Metal-Free Substitutions and Cross-Couplings. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1786-1796 Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. <i>Chemical Reviews</i> , 2021 , 121, 12548-12680 Formal aromaticity transfer for palladium-catalyzed coupling between phenols and	4·3 2 5·8 16·4 68·1	3333333333

246	Nickel-Catalyzed Regioselective Hydrobenzylation of 1,3-Dienes with Hydrazones. <i>ACS Catalysis</i> , 2019 , 9, 9199-9205	13.1	31
245	Iridium-Catalyzed Direct Dehydroxylation of Alcohols. <i>European Journal of Organic Chemistry</i> , 2013 , 6496-6500	3.2	31
244	Magnetically Recoverable CuFe2O4 Nanoparticles as Highly Active Catalysts for Csp3-Csp and Csp3-Csp3 Oxidative Cross-Dehydrogenative Coupling. <i>Synlett</i> , 2013 , 24, 1637-1642	2.2	31
243	Pybox ligand-promoted copper(I)-catalyzed three-component tandem coupling-annulation of terminal alkynes, amines and ortho-alkynylaryl aldehydes. <i>Tetrahedron Letters</i> , 2009 , 50, 6791-6794	2	31
242	En route to metal-mediated and metal-catalysed reactions in water. <i>Chemical Science</i> , 2019 , 10, 34-46	9.4	30
241	Dearomatization-Rearomatization Strategy for Reductive Cross-Coupling of Indoles with Ketones in Water. <i>Organic Letters</i> , 2019 , 21, 2302-2306	6.2	30
240	Carboxyl-Directed Conjugate Addition of Cℍ Bonds to ⊞,EUnsaturated Ketones in Air and Water. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1358-1363	5.6	30
239	Photo-induced Carboiodination: A Simple Way to Synthesize Functionalized Dihydrobenzofurans and Indolines. <i>Chemistry - A European Journal</i> , 2016 , 22, 15252-15256	4.8	30
238	Separation, recovery and reuse of N-heterocyclic carbene catalysts in transesterification reactions. <i>Chemical Communications</i> , 2009 , 6249-51	5.8	30
237	Ruthenium-Catalyzed Tandem Olefin Migration/Aldol and Mannich-Type Reactions in Water and Protic Solvents. <i>European Journal of Organic Chemistry</i> , 2003 , 2003, 998-1003	3.2	30
236	Synthesis of amino acids via a three-component reaction of phenols, glyoxylates and amines. <i>Tetrahedron Letters</i> , 2000 , 41, 6715-6719	2	30
235	Metal-Free Direct Deoxygenative Borylation of Aldehydes and Ketones. <i>Journal of the American Chemical Society</i> , 2020 , 142, 13011-13020	16.4	29
234	Formal Direct Cross-Coupling of Phenols with Amines. <i>Angewandte Chemie</i> , 2015 , 127, 14695-14699	3.6	29
233	Transition-metal-free one-pot synthesis of biaryls from Grignard reagents and substituted cyclohexanones. <i>Chemistry - A European Journal</i> , 2013 , 19, 7151-5	4.8	29
232	Ligand-promoted reaction on silver nanoparticles: phosphine-promoted, silver nanoparticle-catalyzed cyclization of 2-(1-hydroxy-3-arylprop-2-ynyl)phenols. <i>Tetrahedron Letters</i> , 2010 , 51, 6722-6725	2	29
231	Solvent-free direct aza-Friedel C rafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. <i>Tetrahedron Letters</i> , 2006 , 47, 6791-6794	2	29
230	A direct retro-barbier fragmentation. <i>Journal of Organic Chemistry</i> , 2000 , 65, 5831-3	4.2	29
229	Trimethylenemethane dianion equivalent in aqueous medium. <i>Tetrahedron Letters</i> , 1995 , 36, 517-518	2	29

228	An Old Dog with New Tricks: Enjoin Wolffkishner Reduction for Alcohol Deoxygenation and Cli Bond Formations. <i>Synlett</i> , 2019 , 30, 1508-1524	2.2	28
227	Transition-Metal-Free Coupling of Alkynes with ⊞-Bromo Carbonyl Compounds: An Efficient Approach towards III-Alkynoates and Allenoates. <i>Chemistry - A European Journal</i> , 2016 , 22, 5888-93	4.8	28
226	Indium and zinc mediated one-atom carbocycle enlargement in water. <i>Tetrahedron Letters</i> , 1997 , 38, 4735-4736	2	28
225	Aldol reaction via in situ olefin migration in water. <i>Tetrahedron Letters</i> , 2002 , 43, 3589-3591	2	28
224	Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. <i>Science China Chemistry</i> , 2015 , 58, 1286-1291	7.9	27
223	Photo-induced iodination of aryl halides under very mild conditions. <i>Nature Protocols</i> , 2016 , 11, 1948-19	9 54 .8	27
222	Iron-Catalyzed Nucleophilic Addition Reaction of Organic Carbanion Equivalents via Hydrazones. <i>Organic Letters</i> , 2018 , 20, 3801-3805	6.2	27
221	Rapid syntheses of (日)-pterocarpans and isoflavones via the gold-catalyzed annulation of aldehydes and alkynes. <i>Tetrahedron Letters</i> , 2007 , 48, 8343-8346	2	27
220	Efficient Synthesis of <code>QFAlkynyl-Famino</code> Acid Derivatives by a New Copper-Catalyzed Amine-Alkyne-Alkyne Addition Reaction. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 2226-2230	5.6	27
219	Domino reaction of anilines with 3,4-dihydro-2H-pyran catalyzed by cation-exchange resin in water: an efficient synthesis of 1,2,3,4-tetrahydroquinoline derivatives. <i>Green Chemistry</i> , 2003 , 5, 627	10	27
218	Indium-mediated highly diastereoselective allenylation in aqueous medium: total synthesis of (+)-goniofufurone. <i>Chemical Communications</i> , 1998 , 449-450	5.8	27
217	Synthesis of 6-Trifluoromethylphenanthridines through Radical Trifluoromethylation of Isocyanides with Sodium Triflinate under Visible Light. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 2498-250)3 ^{3.2}	27
216	WaterEhe greenest solvent overall. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 118-12	2 3 7.9	26
215	Direct Catalytic Methanol-to-Ethanol Photo-conversion via Methyl Carbene. <i>CheM</i> , 2019 , 5, 858-867	16.2	26
214	Switch in Selectivity for Formal Hydroalkylation of 1,3-Dienes and Enynes with Simple Hydrazones. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6466-6472	16.4	26
213	Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models. <i>Angewandte Chemie</i> , 2018 , 130, 3814-3819	3.6	26
212	Development of a copper(II)-catalyzed three-component tandem synthesis of isoindolinone derivatives. <i>Canadian Journal of Chemistry</i> , 2012 , 90, 92-99	0.9	26
211	Hydrogen bonding promoted simple and clean photo-induced reduction of C-X bond with isopropanol. <i>Chemical Communications</i> , 2019 , 55, 767-770	5.8	25

210	Aniline carbamates: a versatile and removable motif for palladium-catalyzed directed C-H activation. <i>Chemistry - A European Journal</i> , 2014 , 20, 12066-70	4.8	25
209	Rhodium(I)-Catalyzed Regiospecific Dimerization of Aromatic Acids: Two Direct C?H Bond Activations in Water. <i>Angewandte Chemie</i> , 2015 , 127, 5810-5813	3.6	25
208	Self-catalytic, solvent-free or in/on water protocol: aza-Friedel@rafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. <i>Tetrahedron</i> , 2010 , 66, 1045-1050	2.4	25
207	Stepwise synthesis and characterization of oligomers based on 1,1?-binaphthol with 3,3?-acetylene spacer. <i>Tetrahedron: Asymmetry</i> , 1998 , 9, 3693-3707		25
206	Transition-Metal-Free Alkynylation of 2-Oxindoles through Radical-Radical Coupling. <i>Journal of Organic Chemistry</i> , 2017 , 82, 2656-2663	4.2	24
205	A transition-metal-free Heck-type reaction between alkenes and alkyl iodides enabled by light in water. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 6170-4	3.9	24
204	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal Drganic Frameworks. <i>Crystal Growth and Design</i> , 2018 , 18, 3222-3228	3.5	24
203	Construction of Spirocyclic Tetrahydro-Etarbolines via Cross-Annulation of Phenols with Tryptamines in Water. <i>Organic Letters</i> , 2019 , 21, 7033-7037	6.2	24
202	Catalytic Aerobic Synthesis of Aromatic Ethers from Non-Aromatic Precursors. <i>Angewandte Chemie</i> , 2012 , 124, 7655-7658	3.6	24
201	An Unusual Peroxide-Mediated Amination of Cycloalkanes with Nitroarenes. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 353-356	5.6	24
200	Copper-catalyzed amine-alkyne-alkyne addition reaction: an efficient method for the synthesis of gamma,delta-alkynyl-beta-amino acid derivatives. <i>Chemistry - A European Journal</i> , 2009 , 15, 11668-74	4.8	24
199	Gold-Catalyzed Coupling of Alkynes and Acyl Iminiums. <i>Letters in Organic Chemistry</i> , 2005 , 2, 410-414	0.6	24
198	Nitrogen Photofixation over III-Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. <i>Angewandte Chemie</i> , 2017 , 129, 8827-8831	3.6	23
197	Cu(II)-catalyzed allylic silylation of Morita-Baylis-Hillman alcohols via dual activation of Si-B bond and hydroxyl group. <i>Journal of Organic Chemistry</i> , 2013 , 78, 11076-81	4.2	23
196	Gold(I)-Catalyzed Annulation of Salicylaldehydes and Aryl Acetylenes as an Expedient Route to Isoflavanones. <i>Angewandte Chemie</i> , 2007 , 119, 1135-1137	3.6	23
195	Enantiomeric discrimination of chiral amines with new fluorescent chemosensors. <i>Chemical Communications</i> , 1998 , 1747-1748	5.8	23
194	A cross-dehydrogenative C(sp)-H heteroarylation via photo-induced catalytic chlorine radical generation. <i>Nature Communications</i> , 2021 , 12, 4010	17.4	23
193	Palladium-Catalyzed Formal Hydroalkylation of Aryl-Substituted Alkynes with Hydrazones. Angewandte Chemie - International Edition, 2020 , 59, 14009-14013	16.4	22

(2000-2005)

192	Water-promoted direct aerobic oxidation of enol silyl ether to ⊞-hydroxyl ketones without catalyst. <i>Green Chemistry</i> , 2005 , 7, 61-63	10	22
191	Rhodium-Catalyzed Conjugated Addition of Aryllead Reagents to 🛭 , 🗓 Insaturated Carbonyl Compounds in Air and Water. <i>Synlett</i> , 2001 , 2001, 1470-1472	2.2	22
190	Copper-catalyzed asymmetric sp C-H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 2636-2643	2.5	22
189	Cross-dehydrogenative coupling: a sustainable reaction for CII bond formations. <i>Green Chemistry</i> , 2021 , 23, 6789-6862	10	22
188	Highly Efficient Palladium-Catalyzed Coupling of Acetylene Gas with Aryl Iodides in Aqueous Medium. <i>Organic Process Research and Development</i> , 1997 , 1, 325-327	3.9	21
187	Synthesis of a new type of chiral N,P- and N,O-ligands. <i>Tetrahedron Letters</i> , 2008 , 49, 668-671	2	21
186	Indium-Trichloride Mediated Synthesis of 4,4-Dichlorotetrahydropyrans. <i>Synlett</i> , 1999 , 1999, 717-718	2.2	21
185	Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization-Rearomatization Processes. <i>Accounts of Chemical Research</i> , 2020 , 53, 2395	5 22 4313	21
184	Palladium-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes: Switching Regioselectivity via Simple Hydrazones. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13098-131	0 ^{16.4}	21
183	Umpolung Addition of Aldehydes to Aryl Imines. <i>Angewandte Chemie</i> , 2017 , 129, 6356-6359	3.6	20
182	Photoinduced transition-metal- and external-photosensitizer-free intramolecular aryl rearrangement C(Ar)-O bond cleavage. <i>Chemical Science</i> , 2020 , 11, 5740-5744	9.4	20
181	Catalytic N-modification of ⊞-amino acids and small peptides with phenol under bio-compatible conditions. <i>Communications Chemistry</i> , 2018 , 1,	6.3	20
180	Indium mediated reactions in water: Synthesis of Ehydroxyl esters. <i>Tetrahedron Letters</i> , 1997 , 38, 4731-4	Z 34	20
179	Synthesis of a new chiral amino phosphine ligand and its application in the asymmetric allylic alkylation (AAA) reaction. <i>Tetrahedron: Asymmetry</i> , 2007 , 18, 1043-1047		20
178	Peroxide-mediated efficient addition of cycloalkanes to imines. <i>Tetrahedron Letters</i> , 2008 , 49, 5601-560	4	20
177	Highly efficient three-component synthesis of beta-lactams from N-methylhydroxylamine, aldehydes, and phenylacetylene. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 203-9	4.5	20
176	The effects of aromatic and aliphatic anionic surfactants on Sc(OTf)3-catalyzed Mukaiyama aldol reaction in water. <i>Tetrahedron Letters</i> , 2001 , 42, 1803-1805	2	20
175	Diastereoselective synthesis of multisubstituted thiacyclohexanes via cationBlefin cyclizations. <i>Tetrahedron Letters</i> , 2000 , 41, 1321-1325	2	20

174	Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. <i>Angewandte Chemie</i> , 2016 , 128, 10964-10968	3.6	20
173	Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. <i>Angewandte Chemie</i> , 2017 , 129, 6399-64	103 .6	19
172	Direct Synthesis of Diphenylamines from Phenols and Ammonium Formate Catalyzed by Palladium. <i>ChemSusChem</i> , 2019 , 12, 2999-3002	8.3	19
171	Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement. <i>Chemistry - A European Journal</i> , 2016 , 22, 6262-7	4.8	19
170	Gold-catalyzed efficient regioselective addition of arenes to allenes. <i>Canadian Journal of Chemistry</i> , 2008 , 86, 616-620	0.9	19
169	Magnesium in water: simple and effective for pinacol-coupling. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1998 , 3131-3132		19
168	Palladium-Catalyzed Direct ECH Arylation of Ketones with Arylboronic Acids in Water. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 2402-2406	5.6	18
167	A silver-catalyzed transfer hydrogenation of aldehyde in air and water. <i>Organic Chemistry Frontiers</i> , 2014 , 1, 161	5.2	18
166	A novel palladium-catalyzed coupling of epoxides with allyl bromide mediated by indium(I) chloride: a cascade epoxide rearrangement-carbonyl allylation. <i>Chemical Communications</i> , 2003 , 2318-9	5.8	18
165	Synergistic Relay Reactions To Achieve Redox-Neutral ⊞-Alkylations of Olefinic Alcohols with Ruthenium(II) Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4544-4549	16.4	18
164	Rhodium-catalysed tandem dehydrogenative coupling Michael addition: direct synthesis of phthalides from benzoic acids and alkenes. <i>RSC Advances</i> , 2016 , 6, 40626-40630	3.7	18
163	Light-enabled metal-free pinacol coupling by hydrazine. <i>Chemical Science</i> , 2019 , 10, 10937-10943	9.4	17
162	Combined A3 Coupling and Click Chemistry Approach for the Synthesis of Dendrimer-Based Biological Tools. <i>ACS Macro Letters</i> , 2014 , 3, 1079-1083	6.6	17
161	Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes. <i>Chemistry - A European Journal</i> , 2017 , 23, 793-797	4.8	17
160	The First Cobalt-Catalyzed Transformation of Alkynyl C-H Bond: Aldehyde-Alkyne-Amine (AL) Coupling. <i>Synlett</i> , 2010 , 2010, 475-479	2.2	17
159	Reaction of alkenecarboxylic acids with isocyanates via rhodium(III)-catalyzed CH activation: a versatile route to cyclic imides. <i>Organic Chemistry Frontiers</i> , 2016 , 3, 971-974	5.2	17
158	Nickel-Catalyzed Cross-Coupling of Umpolung Carbonyls and Alkyl Halides. <i>Journal of Organic Chemistry</i> , 2019 , 84, 6312-6322	4.2	16
157	Photoinduced catalyst-free deborylationdeuteration of arylboronic acids with D2O. <i>Green Chemistry</i> , 2020 , 22, 6323-6327	10	16

156	Switching the Z/E selectivity in the palladium(II)-catalyzed decarboxylative Heck arylations of trans-cinnamaldehydes by solvent. <i>Organic Letters</i> , 2014 , 16, 6282-5	6.2	16
155	Synthesis of Propargylamines by a Copper-Catalyzed Tandem Anti-Markovnikov Hydroamination and Alkyne Addition. <i>Synlett</i> , 2009 , 2009, 937-940	2.2	16
154	Rhodium-catalyzed reactions of arylbismuth and aryllead reagents with a chiral glyoxylate hydrate in air and water: water-promoted diastereoselectivity enhancement. <i>Tetrahedron Letters</i> , 2002 , 43, 778	19 ² 779	1 16
153	Photo-induced transition-metal and photosensitizer free crossBoupling of aryl halides with disulfides. <i>Green Synthesis and Catalysis</i> , 2021 , 2, 303-306	9.3	16
152	Methane conversion to ethylene over GaN catalysts. Effect of catalyst nitridation. <i>Applied Catalysis A: General</i> , 2020 , 595, 117430	5.1	15
151	Indium-mediated nucleophilic substitution reaction of ∰unsaturated ⊞-methoxypiperidine derivative in water. <i>Tetrahedron Letters</i> , 2003 , 44, 5519-5522	2	15
150	Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. <i>Angewandte Chemie</i> , 2018 , 130, 16758-16762	3.6	15
149	Palladium-catalyzed hydroalkylation of methylenecyclopropanes with simple hydrazones. <i>Chemical Science</i> , 2020 , 11, 10759-10763	9.4	14
148	Ligand Modified CuFe2O4 Nanoparticles as Magnetically Recoverable and Reusable Catalyst for Azide-Alkyne Click Condensation. <i>Heterocycles</i> , 2012 , 86, 1023	0.8	14
147	Copper(II) Triflate-Catalyzed Three-Component Coupling of Aldehydes, Alkynes and Carbamates. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 2437-2440	5.6	14
146	Synthesis and Study of A Molecular Fluorescent Chemosensor For Potassium. <i>European Journal of Organic Chemistry</i> , 2000 , 2000, 387-389	3.2	14
145	Synthesis of a bis-(binaphthol). <i>Tetrahedron Letters</i> , 1996 , 37, 4459-4462	2	14
144	Palladium-catalyzed aerobic synthesis of ortho-substituted phenols from cyclohexanones and primary alcohols. <i>Chemical Communications</i> , 2020 , 56, 1239-1242	5.8	14
143	CII Bond Formation by Oxidative Ring-Opening Homocoupling of Cyclobutanols. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 1070-1073	3.2	13
142	Copper(II)-catalyzed highly regio- and stereo-selective hydrosilylation of unactivated internal alkynes with silylborate in water. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 5871-4	3.9	13
141	Synthesis of Chiral 1,3-Disubstituted Tetrahydroisoquinolines and Their Use in the Asymmetric Addition of Diethylzinc to Aldehydes. <i>Heterocycles</i> , 2010 , 80, 1319	0.8	13
140	Synthesis of Oxazolidinones, Dioxazolidinone and Polyoxazolidinone (A New Polyurethane) Via A Multi Component-Coupling of Aldehyde, Diamine Dihydrochloride, Terminal Alkyne and CO2. <i>Letters in Organic Chemistry</i> , 2012 , 9, 585-593	0.6	13
139	Model studies of (+)-bergenin: A convenient formation of aryl flactones. <i>Tetrahedron Letters</i> , 1998 , 39, 6837-6840	2	13

138	Fluorous tagging: an enabling isolation technique for indium-mediated allylation reactions in water. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 3589-91	3.9	13
137	Transition-Metal-Catalyzed Direct Addition of Aryl C-H Bonds to Unsaturated Electrophiles. <i>Chemical Record</i> , 2016 , 16, 1178-90	6.6	13
136	Dehydrative condensation of carbonyls with non-acidic methylenes enabled by light: synthesis of benzofurans. <i>Chemical Communications</i> , 2016 , 52, 13120-13123	5.8	13
135	Dearomatization-Rearomatization Strategy for ortho-Selective Alkylation of Phenols with Primary Alcohols. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4043-4048	16.4	13
134	Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. <i>Chemical Society Reviews</i> , 2021 , 50, 10955-10982	58.5	13
133	GaN nanowires as a reusable photoredox catalyst for radical coupling of carbonyl under blacklight irradiation. <i>Chemical Science</i> , 2020 , 11, 7864-7870	9.4	12
132	Copper-Catalyzed Radical Reductive Arylation of Styrenes with Aryl Iodides Mediated by Zinc in Water. <i>Journal of Organic Chemistry</i> , 2018 , 83, 7416-7422	4.2	12
131	Umpolung cross-coupling of polyfluoroarenes with hydrazones via activation of C-F bonds. <i>Chemical Communications</i> , 2019 , 55, 9323-9326	5.8	12
130	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. <i>Tetrahedron</i> , 2014 , 70, 6162-6168	2.4	12
129	Ruthenium-catalyzed aldehyde functionality reshuffle: selective synthesis of E-2-arylcinnamaldehydes from E-Ebromostyrenes and aryl aldehydes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16468-71	16.4	12
128	Magnetically Recoverable Iron Nanoparticle Catalyzed Cross-Dehydrogena⊡ive Coupling (CDC) between Two Csp⊕H Bonds Using Molecular Oxygen. <i>Synlett</i> , 2010 , 2010, 2002-2008	2.2	12
127	Exploration of new reaction tools for late-stage functionalization of complex chemicals. <i>Canadian Journal of Chemistry</i> , 2019 , 97, 67-85	0.9	12
126	Metal-Free Construction of the C(sp)-CF Bond: Trifluoromethylation of Hydrazones with Togni's Reagent under Mild Conditions. <i>Organic Letters</i> , 2019 , 21, 5948-5951	6.2	11
125	Thermal Non-Oxidative Aromatization of Light Alkanes Catalyzed by Gallium Nitride. <i>Angewandte Chemie</i> , 2014 , 126, 14330-14333	3.6	11
124	Highly Efficient Reduction of Aldehydes with Silanes in Water Catalyzed by Silver. <i>Synlett</i> , 2013 , 24, 20	4 <u>%-2</u> 05	611
123	Silver-Catalyzed Direct Addition of Terminal Alkynes to Simple Cyclic Ketones in Water. <i>Synlett</i> , 2012 , 23, 2758-2762	2.2	11
122	In aqua synthesis of a high molecular weight arylethynylene polymer with reversible hydrogel properties. <i>Chemical Communications</i> , 1998 , 1351-1352	5.8	11
121	Non-symmetrical diarylcarboxylic acids via rhodium(I)-catalyzed regiospecific cross-dehydrogenation coupling of aromatic acids: twofold direct CH bond activations in water. <i>RSC Advances</i> , 2016 , 6, 91617-91620	3.7	10

(2020-2019)

120	Efficient Nitrogen Fixation Catalyzed by Gallium Nitride Nanowire Using Nitrogen and Water. <i>IScience</i> , 2019 , 17, 208-216	6.1	10
119	Unorthodox chemistry for an unorthodox challenge: Exploration of new chemical reactivities for a sustainable future. <i>Science China Chemistry</i> , 2011 , 54, 1815-1830	7.9	10
118	Befreiteßuzuki-Reaktion: Kupplung in Wasser bei hoher Temperatur ohne Bergangsmetallreagens. <i>Angewandte Chemie</i> , 2003 , 115, 5004-5006	3.6	10
117	Mono-Alkylation of Diols Through Ruthenium-Catalyzed Reaction with Homoallyl Alcohols. <i>Synthetic Communications</i> , 1998 , 28, 507-515	1.7	10
116	Light-Driven Metal-Free Direct Deoxygenation of Alcohols under Mild Conditions. <i>IScience</i> , 2020 , 23, 101419	6.1	10
115	Metal-Free Photoinduced Transformation of Aryl Halides and Diketones into Aryl Ketones. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 2721-2724	3.2	10
114	Photocatalytic Methylation of Nonactivated sp3 and sp2 CH Bonds Using Methanol on GaN. <i>ACS Catalysis</i> , 2020 , 10, 6248-6253	13.1	9
113	Dearomatization-Rearomatization Strategy for Synthesizing Carbazoles with 2,2'-Biphenols and Ammonia by Dual C(Ar)-OH Bond Cleavages. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 13200)- 1 ·320	5 ⁹
112	Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes. <i>APL Materials</i> , 2015 , 3, 116106	5.7	9
111	Quasi-nature catalysis. Rhodium-catalyzed CIC bond formation in air and water. <i>Pure and Applied Chemistry</i> , 2001 , 73, 1315-1318	2.1	9
110	Synthesis of ∃-amino ⊡lactone via a novel tandem three-component reaction of alkenes, glyoxylates and amines. <i>Tetrahedron Letters</i> , 2000 , 41, 9747-9751	2	9
109	Aldehyde as a Traceless Directing Group for Regioselective C-H Alkylation Catalyzed by Rhodium(III) in Air. <i>Organic Letters</i> , 2020 , 22, 1259-1264	6.2	9
108	Addition reactions of organic carbanion equivalents via hydrazones in water. <i>Tetrahedron</i> , 2021 , 80, 13	1889	9
107	Carbonyl umpolung as an organometallic reagent surrogate. <i>Chemical Society Reviews</i> , 2021 , 50, 10733	-1 5 87 .4 2	² 9
106	Direct conjugate additions using aryl and alkyl organic halides in air and water. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 3579-3584	5.2	9
105	Visible-Light Photoredox Catalyzed Double C-H Functionalization: Radical Cascade Cyclization of Ethers with Benzimidazole-Based Cyanamides. <i>Organic Letters</i> , 2021 , 23, 692-696	6.2	9
104	Ruthenium catalyzed Belective alkylation of vinylpyridines with aldehydes/ketones NH mediated deoxygenative couplings. <i>Chemical Science</i> , 2020 , 12, 2870-2875	9.4	9
103	Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. <i>Organic Letters</i> , 2020 , 22, 8808-8813	6.2	8

102	Low-valent indium as a catalyst for the allylation of ketones and N-acylhydrazones. <i>ChemSusChem</i> , 2009 , 2, 205-6	8.3	8
101	Iridium as a general catalyst for the decarbonylative addition of aldehydes to alkynes. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 211-215	2.3	8
100	Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative CII Cross-Couplings via H2 Release. <i>ACS Catalysis</i> ,14148-14158	13.1	8
99	Silver-Catalyzed Carbene, Nitrene, and Silylene Transfer Reactions 2019 , 439-532		8
98	Direct deoxygenative borylation of carboxylic acids. <i>Nature Communications</i> , 2021 , 12, 4970	17.4	8
97	Rhodium-catalyzed regiospecific CH ortho-phenylation of benzoic acids with Cu/air as an oxidant. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 417-420	5.2	7
96	Photon can tremendously accelerate the alkyl iodideslelimination in water. <i>Tetrahedron Letters</i> , 2015 , 56, 1699-1702	2	7
95	Pd-Catalyzed Homo Cross-Dehydrogenative Coupling of 2-Arylpyridines by Using I2 as the Sole Oxidant. <i>Synthesis</i> , 2016 , 48, 1616-1621	2.9	7
94	A Complete Switch of the Directional Selectivity in the Annulation of 2-Hydroxybenzaldehydes with Alkynes. <i>Angewandte Chemie</i> , 2014 , 126, 14082-14085	3.6	7
93	Silver-Catalyzed Hydrogenation of Aldehydes in Water. <i>Angewandte Chemie</i> , 2013 , 125, 12087-12090	3.6	7
92	Water-Promoted, SilverPhosphine ComplexII atalyzed Stereoselective Cyclization of 2-(1-Hydroxy-3-arylprop-2-ynyl)phenols Leading to a Highly Efficient Approach to Aurones. <i>Synthetic Communications</i> , 2011 , 41, 3228-3236	1.7	7
91	Direct formation of 2,4-disubstituted tetrahydropyranols in water mediated by an acidic solid resin. <i>Green Chemistry</i> , 2003 , 5, 80-81	10	7
90	Aldehyde allylation. in liquid carbon dioxide. <i>Green Chemistry</i> , 1999 , 1, 265-268	10	7
89	Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory. <i>Molecular Catalysis</i> , 2020 , 482, 110606	3.3	7
88	Empowering alcohols as carbonyl surrogates for Grignard-type reactions. <i>Nature Communications</i> , 2020 , 11, 6022	17.4	7
87	Photo-induced transition-metal and external photosensitizer-free organic reactions. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 3594-3613	5.2	7
86	Photocatalytic C(sp3) radical generation via C-H, C-C, and C-X bond cleavage. <i>Chemical Science</i> ,	9.4	7
85	Metal-Free and Redox-Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. <i>Angewandte Chemie</i> , 2018 , 130, 13687-13691	3.6	6

(2018-2014)

84	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. <i>Tetrahedron</i> , 2014 , 70, 8952-8958	2.4	6
83	Carbophilic Cycloisomerization Reactions of Enynesand Domino Processes 2014 , 27-68		6
82	Catalytic Nucleophilic Addition of Alkynes to Imines: The A3 (AldehydeAlkyneAmine) Coupling 2014 , 239-268		6
81	Development of an indicator for the direct visualization of radical intermediates in organic reactions. <i>Chemical Communications</i> , 2017 , 53, 11225-11228	5.8	6
80	Palladium-catalyzed 1,4-addition of terminal alkynes to acrolein. <i>Tetrahedron</i> , 2015 , 71, 5866-5870	2.4	6
79	Visible-Light-Triggered Direct Benzoyloxylation of Electron-Rich Arenes at Room Temperature without Chelation Assistance. <i>European Journal of Organic Chemistry</i> , 2012 , 2012, n/a-n/a	3.2	6
78	Efficient Synthesis of Dihydrobenzofurans via a Multicomponent Coupling of Salicylaldehydes, Amines, and Alkynes. <i>Synlett</i> , 2008 , 2008, 1897-1901	2.2	6
77	Eight-Membered Thiocycloether via Indium-Mediated Ring Enlargement. Synlett, 1999 , 1999, 735-736	2.2	6
76	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	6
75	Silver-catalyzed Cycloaddition Reactions 2019 , 33-83		6
74	Shining Light on the Light-Bearing Element: A Brief Review of Photomediated Cℍ Phosphorylation Reactions. <i>Synthesis</i> , 2021 , 53, 1003-1022	2.9	6
73	Direct synthesis of indenes via a rhodium-catalyzed multicomponent C-H annulation reaction. Organic and Biomolecular Chemistry, 2018, 16, 8042-8047	3.9	6
72	Revised Mechanism for a Ruthenium-Catalyzed Coupling of Aldehyde and Terminal Alkyne. <i>ACS Omega</i> , 2018 , 3, 3218-3227	3.9	5
71	Rearrangement of 2-Aryloxybenzaldehydes to 2-Hydroxybenzophenones by Rhodium-Catalyzed Cleavage of Aryloxy C?O Bonds. <i>Angewandte Chemie</i> , 2011 , 123, 9098-9101	3.6	5
71 70	Rearrangement of 2-Aryloxybenzaldehydes to 2-Hydroxybenzophenones by Rhodium-Catalyzed	3.6	5
	Rearrangement of 2-Aryloxybenzaldehydes to 2-Hydroxybenzophenones by Rhodium-Catalyzed Cleavage of Aryloxy C?O Bonds. <i>Angewandte Chemie</i> , 2011 , 123, 9098-9101	3.6 3.9	
70	Rearrangement of 2-Aryloxybenzaldehydes to 2-Hydroxybenzophenones by Rhodium-Catalyzed Cleavage of Aryloxy C?O Bonds. <i>Angewandte Chemie</i> , 2011 , 123, 9098-9101 Silver Complexes in Organic Transformations 2019 , 661-722 Catalyst-free generation of acyl radicals induced by visible light in water to construct C-N bonds.		5

66	Efficient Direct Alkynylation of Trifluoromethyl Ketones Catalyzed by AgF in Water and Organic Solvents. <i>Synlett</i> , 2008 , 2008, 1571-1573	2.2	4
65	A One-Pot, Rhodium-Catalyzed Hydrostannylation-Conjugate Addition in Air and Water. <i>Letters in Organic Chemistry</i> , 2004 , 1, 122-124	0.6	4
64	Organic Reactions in Water and Other Alternative Media: Metal-Mediated Carbontarbon Bond Formations. ACS Symposium Series, 2002, 178-190	0.4	4
63	Palladium-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes: Switching Regioselectivity via Simple Hydrazones. <i>Angewandte Chemie</i> , 2021 , 133, 13208-13214	3.6	4
62	Aromatic Chemistry in the Excited State: Facilitating Metal-Free Substitutions and Cross-Couplings. <i>Angewandte Chemie</i> , 2020 , 132, 1802-1812	3.6	4
61	Catalytic hydrogenation of CO2 from air via porous silica-supported Au nanoparticles in aqueous solution. <i>Green Chemistry</i> , 2021 , 23, 3740-3749	10	4
60	Copper-Catalyzed Conjugate Addition of Carbonyls as Carbanion Equivalent via Hydrazones. <i>Journal of Organic Chemistry</i> , 2021 , 86, 13111-13117	4.2	4
59	Umpolung carbonyls enable direct allylation and olefination of carbohydrates <i>Science Advances</i> , 2022 , 8, eabm6840	14.3	4
58	Silver Nanoparticles in Organic Transformations 2019 , 723-793		3
57	Catalytic Dimerization of Alkynes 2014 , 299-334		3
56	The Alkyne Zipper Reaction in Asymmetric Synthesis 2014 , 365-394		3
55	Rhodium-catalyzed arylation of ⊞-amido sulfones with arylboronic acids in a waterEoluene biphasic system. <i>Inorganica Chimica Acta</i> , 2011 , 369, 284-287	2.7	3
55 54		2.7	3
	system. <i>Inorganica Chimica Acta</i> , 2011 , 369, 284-287 DearomatizationRearomatization Strategy for Palladium-Catalyzed CN Cross-Coupling Reactions.		3
54	system. <i>Inorganica Chimica Acta</i> , 2011 , 369, 284-287 DearomatizationRearomatization Strategy for Palladium-Catalyzed CN Cross-Coupling Reactions. <i>Synlett</i> , 2020 , 32, C(sp)-C(sp) bond formation via nickel-catalyzed deoxygenative homo-coupling of	2.2	3
54 53	DearomatizationRearomatization Strategy for Palladium-Catalyzed CN Cross-Coupling Reactions. Synlett, 2020, 32, C(sp)-C(sp) bond formation via nickel-catalyzed deoxygenative homo-coupling of aldehydes/ketones mediated by hydrazine. Nature Communications, 2021, 12, 3729	2.2	3
54 53 52	DearomatizationRearomatization Strategy for Palladium-Catalyzed CN Cross-Coupling Reactions. Synlett, 2020, 32, C(sp)-C(sp) bond formation via nickel-catalyzed deoxygenative homo-coupling of aldehydes/ketones mediated by hydrazine. Nature Communications, 2021, 12, 3729 Catalytic Grignard-Type Addition of Aryl C-H Bonds to C=O and C=N Bonds 2016, 3-15	2.2	3 3 3

(2014-2021)

48	Photoinduced transition-metal and external photosensitizer free cross-coupling of aryl triflates with trialkyl phosphites. <i>Chemical Communications</i> , 2021 , 57, 8429-8432	5.8	3
47	Photoinduced Transition-Metal and External Photosensitizer Free Phosphonation of Unactivated C(sp2) B Bond via SET Process under Mild Conditions. <i>Fundamental Research</i> , 2021 , 1, 742-742		3
46	Light-driven MPV-type reduction of aryl ketones/aldehydes to alcohols with isopropanol under mild conditions. <i>Green Chemistry</i> ,	10	3
45	Green Oxidative Synthesis of Carboxylic Acids 2019 , 159-180		2
44	A Cu/Cinchona P,N-ligand system enabled general asymmetric C(sp3)-C(sp) coupling. <i>Science China Chemistry</i> , 2020 , 63, 751-752	7.9	2
43	Alkyne-Azide Reactions 2014, 113-142		2
42	Catalytic Cycloaddition Reactions 2014 , 143-170		2
41	Water as Solvent for Organic and Material Synthesis. ACS Symposium Series, 2000, 62-73	0.4	2
40	Carbontarbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air. <i>Organic Letters</i> , 1999 , 1, 1687-1687	6.2	2
39	Ruthenium(ii)-catalyzed regioselective 1,6-conjugate addition of umpolung aldehydes as carbanion equivalents <i>Chemical Science</i> , 2021 , 13, 118-122	9.4	2
38	Conversion of Lignin into High Value Chemical Products 2019 , 385-403		2
37	CE Oxidative Cleavage in the Aerobic Esterification of Alcohol. <i>CheM</i> , 2020 , 6, 3163-3165	16.2	2
36	Light-driven transition-metal-free direct decarbonylation of unstrained diaryl ketones via a dual C-C bond cleavage <i>Nature Communications</i> , 2022 , 13, 1805	17.4	2
35	Asymmetric Silver-Catalyzed Reactions 2019 , 533-643		1
34	Silver-Catalyzed Cyclizations 2019 , 85-181		1
33	GOLD-CATALYZED MULTI-COMPONENT REACTIONS. Catalytic Science Series, 2014, 225-251	0.4	1
32	Redox Isomerization of Propargyl Alcohols to Enones 2014 , 9-26		1
31	Alkyne Metathesis in Organic Synthesis 2014 , 69-112		1

30	Catalytic Enantioselective Addition of Terminal Alkynes to Carbonyls 2014 , 201-238		1
29	Catalytic Nucleophilic Additions of Alkynes in Water 2013 , 87-108		1
28	Organic Synthesis in Water 2012 , 263-295		1
27	tert-Butyl Hydroperoxide 2012 ,		1
26	The Greening of a Fundamental Reaction: Metal-Mediated Reactions in Water. <i>ACS Symposium Series</i> , 2000 , 74-86	0.4	1
25	IN AQUA SYNTHESIS OF A HIGH MOLECULAR WEIGHT ARYLETHYNYLENE POLYMER EXHIBITING REVERSIBLE HYDROGEL PROPERTIES. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1999 , 36, 971-980	2.2	1
24	Synthesis of (Z)-3-dodecenolide, the main aggregation pheromone from the flat grain beetle, Cryptolestes Pusillus Schlerr. <i>Chinese Journal of Chemistry</i> , 1989 , 7, 407-411		1
23	Palladium-catalyzed 1,4-Addition of Terminal Alkynes to Conjugated Enones 2014 , 72-82		1
22	Study of Rhodamine-Based Fluorescent Probes for Organic Radical Intermediates. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 4059-4064	3.2	1
21	Silver-Catalyzed Reduction and Oxidation of Aldehydes and Their Derivatives 2019 , 645-660		1
20	Silver-Mediated Fluorination, Perfluoroalkylation, and Trifluoromethylthiolation Reactions 2019 , 271-3	330	1
19	Base-Promoted Catalyst-Free Regioselective Hydroacylation of Styrenes with Hydrazones via Carbanion Addition. <i>CCS Chemistry</i> ,1-10	7.2	1
18	Demetallation of organometallic and metal-mediated reactions. Innovation(China), 2022, 100262	17.8	1
17	Catalytic Reactions of Industrial Importance in Aqueous Media 2005 , 591-608		O
16	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. <i>Angewandte Chemie</i> ,e2	03/16/27	770
15	Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones <i>Chemical Science</i> , 2022 , 13, 698-703	9.4	O
14	Addendum: Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. <i>Nature Chemistry</i> , 2017 , 9, 723	17.6	
13	Coupling Reactions and C?H Functionalization 2019 , 331-406		

LIST OF PUBLICATIONS

12	Catalytic Conjugate Additions of Alkynes 2014 , 171-200
11	The Oxidative Dimerization of Acetylenes and Related Reactions: Synthesis and Applications of Conjugated 1,3-Diynes 2014 , 335-364
10	The Sonogashira Reaction 2014 , 269-298
9	Gold(III) Chloride 2015 , 1-24
8	Gold(III) Chloride 2014 , 1-10
7	Synthetic Chemistry with an Eye on Future Sustainability 2012 , 725-758
6	Asymmetric Synthesis Based on Catalytic Activation of C?H Bonds and C?C Bonds129-152
5	Highly Efficient Addition of Activated Methylene Compounds to Alkenes Catalyzed by Gold and Silver 2007 , 222-232
4	The Preparation of Amides by Copper-Mediated Oxidative Coupling of Aldehydes and Amine Hydrochloride Salts 2011 , 14-21
3	CarbonBarbon bond formation and green chemistry: one dream and 30 years hence. <i>Canadian</i> O.9
2	Introduction to Silver Chemistry 2019 , 1-32
1	Silver-Catalyzed CO2 Incorporation 2019 , 407-438