
Stavros Alexandros Theofanidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243775/publications.pdf Version: 2024-02-01

STAVROS ALEXANDROS

#	Article	IF	CITATIONS
1	Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via Mössbauer spectroscopy and in situ QXAS. Applied Catalysis B: Environmental, 2022, 300, 120720.	20.2	25
2	Onâ€purpose Ethylene Production via CO ₂ â€assisted Ethane Oxidative Dehydrogenation: Selectivity Control of Iron Oxide Catalysts. ChemCatChem, 2022, 14, .	3.7	6
3	An assessment of electrified methanol production from an environmental perspective. Green Chemistry, 2021, 23, 7243-7258.	9.0	20
4	What Makes Fe-Modified MgAl ₂ O ₄ an Active Catalyst Support? Insight from X-ray Raman Scattering. ACS Catalysis, 2020, 10, 6613-6622.	11.2	21
5	Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming. Applied Catalysis B: Environmental, 2020, 267, 118691.	20.2	42
6	CO2-oxidative ethane dehydrogenation over highly efficient carbon-resistant Fe-catalysts. Journal of Catalysis, 2020, 388, 52-65.	6.2	40
7	How Does the Surface Structure of Ni-Fe Nanoalloys Control Carbon Formation During Methane Steam/Dry Reforming?. , 2019, , 177-225.		5
8	Ni nanoparticles and the Kirkendall effect in dry reforming of methane. Applied Surface Science, 2018, 452, 239-247.	6.1	21
9	Fe-Containing Magnesium Aluminate Support for Stability and Carbon Control during Methane Reforming. ACS Catalysis, 2018, 8, 5983-5995.	11.2	66
10	Mechanism of carbon deposits removal from supported Ni catalysts. Applied Catalysis B: Environmental, 2018, 239, 502-512.	20.2	39
11	Fe-Based Nano-Materials in Catalysis. Materials, 2018, 11, 831.	2.9	36
12	Controlling the stability of a Fe–Ni reforming catalyst: Structural organization of the active components. Applied Catalysis B: Environmental, 2017, 209, 405-416.	20.2	89
13	CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping. Journal of CO2 Utilization, 2016, 16, 8-16.	6.8	60
14	Carbon gasification from Fe–Ni catalysts after methane dry reforming. Applied Catalysis B: Environmental, 2016, 185, 42-55.	20.2	173
15	Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: RoleÂofÂFe. ACS Catalysis, 2015, 5, 3028-3039.	11.2	383
16	Trimetallic Catalyst Configuration for Syngas Production. ChemCatChem, 0, , .	3.7	1