
Jamie I Vandenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	hERG K ⁺ Channels: Structure, Function, and Clinical Significance. Physiological Reviews, 2012, 92, 1393-1478.	13.1	581
2	Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6210-6215.	3.3	360
3	HERG K+ channels: friend and foe. Trends in Pharmacological Sciences, 2001, 22, 240-246.	4.0	273
4	A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm. Journal of Biomolecular Screening, 2016, 21, 1-11.	2.6	259
5	Mechanisms of pHi recovery after global ischemia in the perfused heart Circulation Research, 1993, 72, 993-1003.	2.0	161
6	Stretch-Sensitive KCNQ1Mutation. Journal of the American College of Cardiology, 2007, 49, 578-586.	1.2	147
7	Domain Reorientation and Rotation of an Intracellular Assembly Regulate Conduction in Kir Potassium Channels. Cell, 2010, 141, 1018-1029.	13.5	141
8	Swelling-activated and isoprenaline-activated chloride currents in guinea pig cardiac myocytes have distinct electrophysiology and pharmacology Journal of General Physiology, 1994, 104, 997-1017.	0.9	126
9	Drug Binding to the Inactivated State Is Necessary but Not Sufficient for High-Affinity Binding to Human <i>Ether-Ã-go-go</i> -Related Gene Channels. Molecular Pharmacology, 2008, 74, 1443-1452.	1.0	124
10	R222Q SCN5A Mutation Is Associated With Reversible Ventricular Ectopy and Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2012, 60, 1566-1573.	1.2	119
11	Temperature dependence of human ether-Ã-go-go-related gene K+ currents. American Journal of Physiology - Cell Physiology, 2006, 291, C165-C175.	2.1	113
12	Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel geneScn5a. Journal of Physiology, 2005, 567, 387-400.	1.3	107
13	A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Translational Medicine, 2015, 4, 1482-1494.	1.6	104
14	Effects of premature stimulation on HERG K+ channels. Journal of Physiology, 2001, 537, 843-851.	1.3	95
15	Human ether-a-go-go related gene (hERG) K+ channels: Function and dysfunction. Progress in Biophysics and Molecular Biology, 2008, 98, 137-148.	1.4	94
16	Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Research in Cardiology, 2002, 97, 348-358.	2.5	85
17	The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation. PLoS ONE, 2011, 6, e16191.	1.1	79
18	Potassium channels in the heart: structure, function and regulation. Journal of Physiology, 2017, 595, 2209-2228.	1.3	79

#	Article	IF	CITATIONS
19	Effects of premature stimulation on HERG K + channels. Journal of Physiology, 2001, 537, 843-851.	1.3	76
20	Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. Journal of Physiology, 2017, 595, 2229-2252.	1.3	76
21	Structure of the HERG K+ Channel S5P Extracellular Linker. Journal of Biological Chemistry, 2003, 278, 42136-42148.	1.6	69
22	Electrogram prolongation and nifedipine-suppressible ventricular arrhythmias in mice following targeted disruption of KCNE1. Journal of Physiology, 2003, 552, 535-546.	1.3	68
23	General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA <i>In Silico</i> Strategy. Clinical Pharmacology and Therapeutics, 2020, 107, 102-111.	2.3	67
24	Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. Journal of Molecular and Cellular Cardiology, 2014, 67, 69-76.	0.9	66
25	Genes and Atrial Fibrillation. Circulation, 2007, 116, 782-792.	1.6	61
26	Epistatic Effects of Potassium Channel Variation on Cardiac Repolarization and Atrial Fibrillation Risk. Journal of the American College of Cardiology, 2012, 59, 1017-1025.	1.2	58
27	The HERG K + channel: progress in understanding the molecular basis of its unusual gating kinetics. European Biophysics Journal, 2004, 33, 89-97.	1.2	57
28	Towards a Structural View of Drug Binding to hERG K + Channels. Trends in Pharmacological Sciences, 2017, 38, 899-907.	4.0	56
29	Cell swelling has differential effects on the rapid and slow components of delayed rectifier potassium current in guinea pig cardiac myocytes Journal of General Physiology, 1995, 106, 1151-1170.	0.9	55
30	Effect of S5P α-helix charge mutants on inactivation of hERG K+channels. Journal of Physiology, 2006, 573, 291-304.	1.3	55
31	Not All hERG Pore Domain Mutations Have a Severe Phenotype: G584S Has an Inactivation Gating Defect with Mild Phenotype Compared to G572S, Which Has a Dominant Negative Trafficking Defect and a Severe Phenotype. Journal of Cardiovascular Electrophysiology, 2009, 20, 923-930.	0.8	54
32	Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics. Journal of Physiology, 2018, 596, 1813-1828.	1.3	54
33	High-throughput phenotyping of heteromeric human ether-Ã-go-go-related gene potassium channel variants can discriminate pathogenic from rare benign variants. Heart Rhythm, 2020, 17, 492-500.	0.3	54
34	Molecular basis of slow activation of the humanether-Ãi-go-gorelated gene potassium channel. Journal of Physiology, 2004, 558, 417-431.	1.3	52
35	A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death. Journal of Molecular and Cellular Cardiology, 2013, 61, 123-132.	0.9	52
36	Substrate Specificity of Platypus Venom L-to-D-Peptide Isomerase. Journal of Biological Chemistry, 2008, 283, 8969-8975.	1.6	49

#	Article	IF	CITATIONS
37	Mapping the sequence of conformational changes underlying selectivity filter gating in the Kv11.1 potassium channel. Nature Structural and Molecular Biology, 2011, 18, 35-41.	3.6	49
38	Tryptophan scanning mutagenesis of the HERG K+channel: the S4 domain is loosely packed and likely to be lipid exposed. Journal of Physiology, 2005, 569, 367-379.	1.3	48
39	Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate clinical long QT phenotypes. Journal of Molecular and Cellular Cardiology, 2016, 100, 25-34.	0.9	46
40	Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels. Journal of General Physiology, 2012, 140, 293-306.	0.9	45
41	Multiscale cardiac modelling reveals the origins of notched T waves in long QT syndrome type 2. Nature Communications, 2014, 5, 5069.	5.8	45
42	Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6. Journal of Physiology, 2003, 551, 253-262.	1.3	44
43	Solution structure of CnErg1 (Ergtoxin), a HERG specific scorpion toxin. FEBS Letters, 2003, 539, 138-142.	1.3	43
44	The Pore Domain Outer Helix Contributes to Both Activation and Inactivation of the hERG K+ Channel. Journal of Biological Chemistry, 2009, 284, 1000-1008.	1.6	43
45	The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating. PLoS ONE, 2012, 7, e31640.	1.1	42
46	High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm, 2020, 17, 2180-2189.	0.3	42
47	Measuring kinetics and potency of hERG block for CiPA. Journal of Pharmacological and Toxicological Methods, 2017, 87, 99-107.	0.3	41
48	Multiple Interactions between Cytoplasmic Domains Regulate Slow Deactivation of Kv11.1 Channels. Journal of Biological Chemistry, 2014, 289, 25822-25832.	1.6	39
49	Experimentally Validated Pharmacoinformatics Approach to Predict hERG Inhibition Potential of New Chemical Entities. Frontiers in Pharmacology, 2018, 9, 1035.	1.6	38
50	Extracellular osmotic pressure modulates sodiumâ€calcium exchange in isolated guineaâ€pig ventricular myocytes Journal of Physiology, 1995, 488, 293-301.	1.3	36
51	Trafficking defects in PAS domain mutant Kv11.1 channels: roles of reduced domain stability and altered domain–domain interactions. Biochemical Journal, 2013, 454, 69-77.	1.7	36
52	Mechanism of Block of the hERG K+ Channel by the Scorpion Toxin CnErg1. Biophysical Journal, 2007, 92, 3915-3929.	0.2	35
53	The M1P1 Loop of TASK3 K2P Channels Apposes the Selectivity Filter and Influences Channel Function. Journal of Biological Chemistry, 2008, 283, 16985-16992.	1.6	35
54	In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS. Progress in Biophysics and Molecular Biology, 2016, 120, 89-99.	1.4	32

#	Article	IF	CITATIONS
55	The Temperature Dependence of Kinetics Associated with Drug Block of hERG Channels Is Compound-Specific and an Important Factor for Proarrhythmic Risk Prediction. Molecular Pharmacology, 2018, 94, 760-769.	1.0	32
56	Sensitivity limits for voltage control of P2Y receptor-evoked Ca2+mobilization in the rat megakaryocyte. Journal of Physiology, 2004, 555, 61-70.	1.3	31
57	Changes in ventricular repolarization during acidosis and low-flow ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H551-H561.	1.5	29
58	Rescue of protein expression defects may not be enough to abolish the proâ€arrhythmic phenotype of long QT type 2 mutations. Journal of Physiology, 2016, 594, 4031-4049.	1.3	28
59	The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. Journal of Molecular and Cellular Cardiology, 2016, 97, 24-35.	0.9	28
60	Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres. Journal of Physiology, 2001, 535, 579-590.	1.3	27
61	Kinetics of Drug Interaction with the Kv11.1 Potassium Channel. Molecular Pharmacology, 2014, 85, 769-776.	1.0	26
62	Getting to the heart of hERG K ⁺ channel gating. Journal of Physiology, 2015, 593, 2575-2585.	1.3	26
63	Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovascular Research, 2020, 116, 1434-1445.	1.8	26
64	Differential Response to Risperidone in Schizophrenia Patients by <i>KCNH2</i> Genotype and Drug Metabolizer Status. American Journal of Psychiatry, 2016, 173, 53-59.	4.0	24
65	The Schizophrenia-Associated Kv11.1-3.1 Isoform Results in Reduced Current Accumulation during Repetitive Brief Depolarizations. PLoS ONE, 2012, 7, e45624.	1.1	24
66	Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart. Biochemical Journal, 2000, 346, 385-391.	1.7	22
67	The effect of heptanol on the electrical and contractile function of the isolated, perfused rabbit heart. Pflugers Archiv European Journal of Physiology, 2000, 440, 275-282.	1.3	22
68	Quantifying the origins of population variability in cardiac electrical activity through sensitivity analysis of the electrocardiogram. Journal of Physiology, 2013, 591, 4207-4222.	1.3	22
69	Never at rest: insights into the conformational dynamics of ion channels from cryoâ€electron microscopy. Journal of Physiology, 2018, 596, 1107-1119.	1.3	22
70	Cardiac Expression of the Cystic Fibrosis Transmembrane Conductance Regulator Involves Novel Exon 1 Usage to Produce a Unique Amino-terminal Protein. Journal of Biological Chemistry, 2004, 279, 15877-15887.	1.6	21
71	Molecular Dynamics and Continuum Electrostatics Studies of Inactivation in the HERG Potassium Channel. Journal of Physical Chemistry B, 2007, 111, 1090-1098.	1.2	21
72	Action potential shortening through the putative β 4 -adrenoceptor in ferret ventricle: comparison with β 1 - and β 2 -adrenoceptor-mediated effects. British Journal of Pharmacology, 1998, 124, 1341-1344.	2.7	20

#	Article	IF	CITATIONS
73	Pore Helices Play a Dynamic Role as Integrators of Domain Motion during Kv11.1 Channel Inactivation Gating. Journal of Biological Chemistry, 2013, 288, 11482-11491.	1.6	20
74	Role of the Cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) Domain in Trafficking and Stabilization of Kv11.1 Channels. Journal of Biological Chemistry, 2014, 289, 13782-13791.	1.6	20
75	Co-expression of calcium and hERG potassium channels reduces the incidence of proarrhythmic events. Cardiovascular Research, 2021, 117, 2216-2227.	1.8	20
76	Application of progress curve analysis to in situ enzyme kinetics using 1H NMR spectroscopy. Analytical Biochemistry, 1986, 155, 38-44.	1.1	19
77	Cortisol influences the ontogeny of both alpha- and beta-subunits of the cardiac sodium channel in fetal sheep. Journal of Endocrinology, 2004, 180, 449-455.	1.2	18
78	Post-transcriptional regulation of the cystic fibrosis gene in cardiac development and hypertrophy. Biochemical and Biophysical Research Communications, 2004, 319, 410-418.	1.0	18
79	Structure of the pore-helix of the hERG K+ channel. European Biophysics Journal, 2009, 39, 111-120.	1.2	18
80	Protocol-Dependent Differences in IC ₅₀ Values Measured in Human Ether-ÕGo-Go–Related Gene Assays Occur in a Predictable Way and Can Be Used to Quantify State Preference of Drug Binding. Molecular Pharmacology, 2019, 95, 537-550.	1.0	18
81	Molecular and functional distributions of chloride conductances in rabbit ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1403-H1409.	1.5	17
82	Temperature Effects on Kinetics of K _V 11.1 Drug Block Have Important Consequences for In Silico Proarrhythmic Risk Prediction. Molecular Pharmacology, 2016, 90, 1-11.	1.0	17
83	The assimilation of tri- and tetrapeptides by human erythrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 846, 127-134.	1.9	16
84	Extracellular Acidosis Modulates Drug Block of Kv4.3 Currents by Flecainide and Quinidine. Journal of Cardiovascular Electrophysiology, 2003, 14, 641-650.	0.8	16
85	A calibrated functional patch-clamp assay to enhance clinical variant interpretation in KCNH2-related long QT syndrome. American Journal of Human Genetics, 2022, 109, 1199-1207.	2.6	16
86	Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels. Journal of General Physiology, 2013, 142, 275-288.	0.9	15
87	In Vitro and In Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details. Frontiers in Physiology, 2017, 8, 934.	1.3	15
88	Molecular Docking Guided Grid-Independent Descriptor Analysis to Probe the Impact of Water Molecules on Conformational Changes of hERG Inhibitors in Drug Trapping Phenomenon. International Journal of Molecular Sciences, 2019, 20, 3385.	1.8	15
89	A massively parallel assay accurately discriminates between functionally normal and abnormal variants in a hotspot domain of KCNH2. American Journal of Human Genetics, 2022, 109, 1208-1216.	2.6	15
90	Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. Journal of Physiology, 2016, 594, 6893-6908.	1.3	14

#	Article	IF	CITATIONS
91	T-wave morphology can distinguish healthy controls from LQTS patients. Physiological Measurement, 2016, 37, 1456-1473.	1.2	14
92	Nobel Prizes for magnetic resonance imaging and channel proteins. Medical Journal of Australia, 2003, 179, 611-613.	0.8	13
93	Atrial Fibrillation—A New Cardiac Channelopathy. Heart Lung and Circulation, 2007, 16, 356-360.	0.2	13
94	Cell swelling and ion transport pathways in cardiac myocytes. Cardiovascular Research, 1996, 32, 85-97.	1.8	13
95	Arrhythmic Phenotypes Are a Defining Feature of Dilated Cardiomyopathy-Associated <i>SCN5A</i> Variants: A Systematic Review. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003432.	1.6	13
96	The S1 helix critically regulates the finely tuned gating of Kv11.1 channels. Journal of Biological Chemistry, 2017, 292, 7688-7705.	1.6	12
97	Heterozygous <i>KCNH2</i> variant phenotyping using Flp-In HEK293 and high-throughput automated patch clamp electrophysiology. Biology Methods and Protocols, 2021, 6, bpab003.	1.0	12
98	Ca2+ buffering in the heart: Ca2+ binding to and activation of cardiac myofibrils. Biochemical Journal, 2000, 346, 393-402.	1.7	11
99	Loss of the Normal Epicardial to Endocardial Gradient of cftr mRNA Expression in the Hypertrophied Rabbit Left Ventricle. Biochemical and Biophysical Research Communications, 2000, 278, 144-149.	1.0	11
100	Heritability of ECG Biomarkers in the Netherlands Twin Registry Measured from Holter ECGs. Frontiers in Physiology, 2016, 7, 154.	1.3	11
101	Pathophysiological metabolic changes associated with disease modify the proarrhythmic risk profile of drugs with potential to prolong repolarisation. British Journal of Pharmacology, 2022, 179, 2631-2646.	2.7	11
102	Insights into hERG K+ channel structure and function from NMR studies. European Biophysics Journal, 2013, 42, 71-79.	1.2	10
103	Developmental regulation of the gradient of cftr expression in the rabbit heart. Mechanisms of Development, 2000, 94, 195-197.	1.7	9
104	Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. Journal of Physiology, 2012, 590, 2569-2570.	1.3	9
105	Enkephalin degradation by human erythrocytes and hemolysates studied using 1H NMR spectroscopy. Archives of Biochemistry and Biophysics, 1985, 242, 515-522.	1.4	8
106	The effect of Mg2+ on cardiac muscle function: is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?. Biochemical Journal, 2001, 354, 539.	1.7	7
107	The S631A Mutation Causes a Mechanistic Switch in the Block of hERG Channels by CnErg1. Biophysical Journal, 2007, 93, L32-L34.	0.2	7
108	Oxidative stress fine-tunes the dance of hERG K+channels. Journal of Physiology, 2010, 588, 2975-2975.	1.3	7

#	Article	IF	CITATIONS
109	Arrhythmogenic effects of ultra-long and bistable cardiac action potentials. PLoS Computational Biology, 2021, 17, e1008683.	1.5	7
110	C-Terminal β9-Strand of the Cyclic Nucleotide-Binding Homology Domain Stabilizes Activated States of Kv11.1 Channels. PLoS ONE, 2013, 8, e77032.	1.1	6
111	<i><scp>TECRL</scp></i> : connecting sequence to consequence for a new sudden cardiac death gene. EMBO Molecular Medicine, 2016, 8, 1364-1365.	3.3	6
112	Recent advances in understanding and prevention of sudden cardiac death. F1000Research, 2017, 6, 1614.	0.8	5
113	Translating the measurement of hERG kinetics and drug block for CiPA to a high throughput platform. Journal of Pharmacological and Toxicological Methods, 2022, , 107192.	0.3	5
114	Ca2+ buffering in the heart: Ca2+ binding to and activation of cardiac myofibrils. Biochemical Journal, 2000, 346, 393.	1.7	4
115	An improved curvilinear gradient method for parameter optimization in complex biological models. Medical and Biological Engineering and Computing, 2011, 49, 289-296.	1.6	4
116	Expression of KCNH2-3.1 mRNA is increased in small neurons in the dorsolateral prefrontal cortex in patients with schizophrenia. European Journal of Psychiatry, 2015, 29, 85-103.	0.7	3
117	Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart. Biochemical Journal, 2000, 346, 385.	1.7	2
118	From kinetics to imaging: an NMR odyssey—a festschrift symposium in honour of Philip William Kuchel. European Biophysics Journal, 2013, 42, 1-2.	1.2	2
119	Tyrosine Residues from the S4-S5 Linker of Kv11.1 Channels Are Critical for Slow Deactivation. Journal of Biological Chemistry, 2016, 291, 17293-17302.	1.6	2
120	Ion channelopathies: what have they taught us about arrhythmias and antiâ€arrhythmic therapy. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 595-595.	0.9	1
121	â€~Shooting gallery' for membrane proteins provides new insights into complexities of their function and structural dynamics. Journal of Physiology, 2015, 593, 353-354.	1.3	1
122	An â€~alternans' way to quantify arrhythmogenic substrates. Journal of Physiology, 2016, 594, 2375-2376.	1.3	1
123	The effect of heptanol on the electrical and contractile function of the isolated, perfused rabbit heart. Pflugers Archiv European Journal of Physiology, 2000, 440, 275.	1.3	1
124	The yin and yang of <i>Tbx5</i> variant effects on sodium channel function. Cardiovascular Research, 2022, 118, 929-931.	1.8	1
125	Post-transcriptional regulation of the cystic fibrosis gene in cardiac development and hypertrophy. Biochemical and Biophysical Research Communications, 2004, 319, 410-410.	1.0	0
126	Tryptophan scanning mutagenesis suggests that the voltage sensor in HERG has a peripheral location. Heart Rhythm, 2005, 2, S106-S107.	0.3	0

#	Article	IF	CITATIONS
127	Reply from Jamie I. Vandenberg, Adam P. Hill, Terence J. Campbell, Catherine E. Clarke. Journal of Physiology, 2006, 577, 461-462.	1.3	Ο
128	Proteins, membranes and cells: the structure–function nexus—ASB 2008. European Biophysics Journal, 2009, 39, 1-1.	1.2	0
129	Investigating Ion Channel Diseases With Dynamic Action Potential Clamp. Biophysical Journal, 2009, 96, 259a.	0.2	0
130	An Improved Curvilinear Gradient Method for Parameter Estimation inÂComplex Model Systems: Application to Gating of A Cardiac Ion Channel. Biophysical Journal, 2010, 98, 140a-141a.	0.2	0
131	BIOPHYSCHEM2011: A Joint Meeting of the Australian Society for Biophysics and the RACI Physical Chemistry Division. Australian Journal of Chemistry, 2012, 65, 439.	0.5	0
132	Is medroxyprogesterone safe in women with long QT syndrome?. Heart Rhythm, 2012, 9, 1148-1149.	0.3	0
133	Bimodal Regulation of hERG Gating by the N-Terminal Tail Revealed by Voltage Clamp Fluorometry. Biophysical Journal, 2012, 102, 328a.	0.2	0
134	Critical Dual Role for the Pore Helix in Kv11.1 Channel Inactivation. Biophysical Journal, 2012, 102, 328a.	0.2	0
135	Understanding the Molecular Gates of KirBac3.1. Biophysical Journal, 2013, 104, 128a.	0.2	0
136	Can many subunits make light work of ion channel inactivation?. Journal of Physiology, 2014, 592, 4411-4412.	1.3	0
137	Dynamic Action Potential Clamp Investigation of Pro-Arrhythmic Risk of Drugs Binding to hERG Potassium Channels. Biophysical Journal, 2014, 106, 553a.	0.2	0
138	Sudden Infant Death and Modulation of Late Sodium Current by Hypoxia, Investigated in Induced Pluripotent Stem Cells. Biophysical Journal, 2016, 110, 30a.	0.2	0
139	Using Clinical Datasets to Optimize Models of Human Ventricular Electrophysiology: Implications for In Silico Drug Screening. Biophysical Journal, 2017, 112, 465a.	0.2	0
140	Sinusoidal Voltage Protocols for Rapid Characterisation of Ion Channel Kinetics. Biophysical Journal, 2018, 114, 293a-294a.	0.2	0
141	When it takes two to get one into trouble. Heart Rhythm, 2022, 19, 293-294.	0.3	0
142	Genetic Engineering and Cardiac Ion Channels. Developments in Cardiovascular Medicine, 1999, , 171-178.	0.1	0