Wenduo Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of miRNA in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e159-e170.	1.1	145
2	Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1055-1071.	1.1	78
3	Mesenchymal stem cells and vascular regeneration. Microcirculation, 2017, 24, e12324.	1.0	74
4	Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2049-2066.	1.1	72
5	Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. Journal of Biological Chemistry, 2018, 293, 8089-8102.	1.6	58
6	Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models. Circulation Research, 2019, 125, 223-241.	2.0	56
7	Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration. Circulation Research, 2018, 123, 451-466.	2.0	34
8	Single-cell RNA sequencing reveals cell type- and artery type-specific vascular remodelling in male spontaneously hypertensive rats. Cardiovascular Research, 2021, 117, 1202-1216.	1.8	28
9	Leptin Induces Sca-1 ⁺ Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2114-2127.	1.1	27
10	Single-cell gene profiling and lineage tracing analyses revealed novel mechanisms of endothelial repair by progenitors. Cellular and Molecular Life Sciences, 2020, 77, 5299-5320.	2.4	24
11	DKK3 (Dikkopf-3) Transdifferentiates Fibroblasts Into Functional Endothelial Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 765-773.	1.1	19
12	Impact of Local Alloimmunity and Recipient Cells in Transplant Arteriosclerosis. Circulation Research, 2020, 127, 974-993.	2.0	17
13	Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cellular and Molecular Life Sciences, 2018, 75, 4079-4091.	2.4	13
14	X-box binding protein 1–mediated COL4A1s secretion regulates communication between vascular smooth muscle and stem/progenitor cells. Journal of Biological Chemistry, 2021, 296, 100541.	1.6	10
15	Plasticity of vascular resident mesenchymal stromal cells during vascular remodeling. Vascular Biology (Bristol, England), 2019, 1, H67-H73.	1.2	2