Zeâ€ĕ\ A Ronai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243447/publications.pdf

Version: 2024-02-01

166 papers

15,193 citations

71
h-index

119 g-index

171 all docs

171 docs citations

171 times ranked

21279 citing authors

#	Article	IF	CITATIONS
1	Arginylâ€ŧRNAâ€protein transferase 1 (ATE1) promotes melanoma cell growth and migration. FEBS Letters, 2022, 596, 1468-1480.	2.8	1
2	Targeting eIF4F translation initiation complex with SBI-756 sensitises B lymphoma cells to venetoclax. British Journal of Cancer, 2021, 124, 1098-1109.	6.4	13
3	Harnessing the Co-vulnerabilities of Amino Acid-Restricted Cancers. Cell Metabolism, 2021, 33, 9-20.	16.2	22
4	MAPK signaling regulates câ€MYC for melanoma cell adaptation to asparagine restriction. EMBO Reports, 2021, 22, e51436.	4.5	15
5	Identification and Characterization of IMD-0354 as a Glutamine Carrier Protein Inhibitor in Melanoma. Molecular Cancer Therapeutics, 2021, 20, 816-832.	4.1	16
6	IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells., 2021, 9, e002856.		19
7	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
8	Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Research, 2021, 81, 5230-5241.	0.9	9
9	The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nature Communications, 2021, 12, 5397.	12.8	20
10	Lipid metabolism: new twists to the Yin and Yang of PKM2 in cancer. EMBO Journal, 2021, 40, e109683.	7.8	2
11	A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing. Nature Communications, 2021, 12, 6512.	12.8	24
12	Siah2 control of T-regulatory cells limits anti-tumor immunity. Nature Communications, 2020, 11, 99.	12.8	15
13	The gut microbiome: an unexpected player in cancer immunity. Current Opinion in Neurobiology, 2020, 62, 48-52.	4.2	23
14	Takashi Sugimura (1926–2020). Cancer Cell, 2020, 38, 749-750.	16.8	0
15	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	3.4	13
16	Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. Journal of Investigative Dermatology, 2020, 140, 2466-2477.	0.7	13
17	PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Science Translational Medicine, 2020, 12, .	12.4	111
18	Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends in Cancer, 2020, 6, 960-973.	7.4	19

#	Article	lF	Citations
19	PRMT5 function and targeting in cancer. Cell Stress, 2020, 4, 199-215.	3.2	110
20	RNF5 Defines Acute Myeloid Leukemia Growth and Susceptibility to Histone Deacetylase Inhibitors. Blood, 2020, 136, 31-32.	1.4	0
21	Ubiquitin Ligases in Cancer Immunotherapy – Balancing Antitumor and Autoimmunity. Trends in Molecular Medicine, 2019, 25, 428-443.	6.7	35
22	Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5 \hat{a} '/ \hat{a} ' mice. Nature Communications, 2019, 10, 1492.	12.8	114
23	Identification and characterization of small molecule inhibitors of the ubiquitin ligases Siah $1/2$ in melanoma and prostate cancer cells. Cancer Letters, 2019, 449, 145-162.	7.2	16
24	Translational reprogramming marks adaptation to asparagine restriction in cancer. Nature Cell Biology, 2019, 21, 1590-1603.	10.3	61
25	The mTORC1/4E-BP/eIF4E Axis Promotes Antibody Class Switching in B Lymphocytes. Journal of Immunology, 2019, 202, 579-590.	0.8	20
26	Rewired Notch/p53 by Numb'ing Mdm2. Journal of Cell Biology, 2018, 217, 445-446.	5.2	10
27	Ubiquitin ligases in oncogenic transformation and cancer therapy. Nature Reviews Cancer, 2018, 18, 69-88.	28.4	340
28	Regulation of S100A8 Stability by RNF5 in Intestinal Epithelial Cells Determines Intestinal Inflammation and Severity of Colitis. Cell Reports, 2018, 24, 3296-3311.e6.	6.4	39
29	Targeting the Warburg effect via <scp>LDHA</scp> inhibition engages <scp>ATF</scp> 4 signaling for cancer cell survival. EMBO Journal, 2018, 37, .	7.8	103
30	Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes and Development, 2017, 31, 18-33.	5.9	184
31	Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons. Neuron, 2017, 94, 1142-1154.e6.	8.1	118
32	ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacological Research, 2017, 119, 347-357.	7.1	108
33	The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight, 2017, 2, .	5.0	9
34	SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. Journal of Clinical Investigation, 2017, 128, 517-530.	8.2	36
35	Altered Signal Transduction Pathways in Melanoma. , 2017, , 177-207.		0
36	Adaptive Stress Responses During Tumor Metastasis and Dormancy. Trends in Cancer, 2016, 2, 429-442.	7.4	84

#	Article	IF	Citations
37	A Transcriptionally Inactive ATF2 Variant Drives Melanomagenesis. Cell Reports, 2016, 15, 1884-1892.	6.4	21
38	Monoubiquitination in proteasomal degradation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8894-8896.	7.1	22
39	Immunogenic, cellular, and angiogenic drivers of tumor dormancyâ€a melanoma view. Pigment Cell and Melanoma Research, 2016, 29, 27-42.	3.3	33
40	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
41	Regulators of mitochondrial dynamics in cancer. Current Opinion in Cell Biology, 2016, 39, 43-52.	5.4	203
42	<scp>ATF</scp> 2 alters melanocyte response and macrophage recruitment in <scp>UV</scp> â€irradiated neonatal mouse skin. Pigment Cell and Melanoma Research, 2015, 28, 481-484.	3.3	4
43	Regulation of Glutamine Carrier Proteins by RNF5 Determines Breast Cancer Response to ER Stress-Inducing Chemotherapies. Cancer Cell, 2015, 27, 354-369.	16.8	177
44	The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation. Science Signaling, 2015, 8, ra124.	3.6	46
45	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	6.4	55
46	The <scp>UP</scp> s and <scp>DOWN</scp> s of <scp>MITF</scp> in melanoma resistance. Pigment Cell and Melanoma Research, 2015, 28, 132-133.	3.3	1
47	UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends in Biochemical Sciences, 2015, 40, 141-148.	7.5	787
48	PDK1 and SGK3 Contribute to the Growth of BRAF-Mutant Melanomas and Are Potential Therapeutic Targets. Cancer Research, 2015, 75, 1399-1412.	0.9	50
49	Dysregulation of ubiquitin ligases in cancer. Drug Resistance Updates, 2015, 23, 1-11.	14.4	42
50	SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Research, 2015, 75, 5211-5218.	0.9	28
51	Right on TARGET: glutamine metabolism in cancer. Oncoscience, 2015, 2, 681-683.	2.2	13
52	Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma. Oncotarget, 2015, 6, 7379-7389.	1.8	68
53	Fine Tuning of the UPR by the Ubiquitin Ligases Siah 1/2. PLoS Genetics, 2014, 10, e1004348.	3.5	33
54	Emerging roles of E3 ubiquitin ligases in autophagy. Trends in Biochemical Sciences, 2013, 38, 453-460.	7. 5	92

#	Article	IF	Citations
55	Structure-Based Design of Covalent Siah Inhibitors. Chemistry and Biology, 2013, 20, 973-982.	6.0	47
56	Regulators and Effectors of Siah Ubiquitin Ligases. Cell Biochemistry and Biophysics, 2013, 67, 15-24.	1.8	61
57	Degradation of Newly Synthesized Polypeptides by Ribosome-Associated RACK1/c-Jun N-Terminal Kinase/Eukaryotic Elongation Factor 1A2 Complex. Molecular and Cellular Biology, 2013, 33, 2510-2526.	2.3	58
58	RACK1 Function in Cell Motility and Protein Synthesis. Genes and Cancer, 2013, 4, 369-377.	1.9	62
59	The E3ÂUbiquitin Ligase Siah2 Contributes to Castration-Resistant Prostate Cancer by Regulation of Androgen Receptor Transcriptional Activity. Cancer Cell, 2013, 23, 332-346.	16.8	132
60	Inhibition of melanoma development in the <i><scp>N</scp>ras</i> ^{<i>(Q61K)</i>} <i>::<scp>I</scp>nk4a</i> ^{<i>â²²/â²²</i>} mouse model by the small molecule <scp>BI</scp> â€69A11. Pigment Cell and Melanoma Research, 2013, 26, 136-142.	3.3	18
61	\hat{l}^2 -Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors. PLoS Genetics, 2013, 9, e1003603.	3.5	60
62	Inhibition of Melanoma Growth by Small Molecules That Promote the Mitochondrial Localization of ATF2. Clinical Cancer Research, 2013, 19, 2710-2722.	7.0	18
63	Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection. PLoS Genetics, 2012, 8, e1003007.	3.5	106
64	ATF2 – at the crossroad of nuclear and cytosolic functions. Journal of Cell Science, 2012, 125, 2815-24.	2.0	89
65	Translational Homeostasis via the mRNA Cap-Binding Protein, eIF4E. Molecular Cell, 2012, 46, 847-858.	9.7	146
66	PKCε Promotes Oncogenic Functions of ATF2 in the Nucleus while Blocking Its Apoptotic Function at Mitochondria. Cell, 2012, 148, 543-555.	28.9	69
67	The Anaphase-Promoting Complex or Cyclosome Supports Cell Survival in Response to Endoplasmic Reticulum Stress. PLoS ONE, 2012, 7, e35520.	2.5	7
68	Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell and Melanoma Research, 2012, 25, 375-383.	3.3	153
69	Fine-Tuning of Drp1/Fis1 Availability by AKAP121/Siah2 Regulates Mitochondrial Adaptation to Hypoxia. Molecular Cell, 2011, 44, 532-544.	9.7	202
70	Effective inhibition of melanoma by Blâ€69A11 is mediated by dual targeting of the AKT and NFâ€₽B pathways. Pigment Cell and Melanoma Research, 2011, 24, 703-713.	3.3	13
71	Comparative Metabolic Flux Profiling of Melanoma Cell Lines. Journal of Biological Chemistry, 2011, 286, 42626-42634.	3.4	274
72	USP13 Enzyme Regulates Siah2 Ligase Stability and Activity via Noncatalytic Ubiquitin-binding Domains. Journal of Biological Chemistry, 2011, 286, 27333-27341.	3.4	55

#	Article	IF	Citations
73	Ubiquitin-recognition protein Ufd1 couples the endoplasmic reticulum (ER) stress response to cell cycle control. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9119-9124.	7.1	62
74	Altered Signal Transduction Pathways in Melanoma. , 2011, , 137-163.		0
75	Siah2-Dependent Concerted Activity of HIF and FoxA2 Regulates Formation of Neuroendocrine Phenotype and Neuroendocrine Prostate Tumors. Cancer Cell, 2010, 18, 23-38.	16.8	208
76	Interplay between Cdh1 and JNK activity during the cell cycle. Nature Cell Biology, 2010, 12, 686-695.	10.3	50
77	Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nature Reviews Cancer, 2010, 10, 65-76.	28.4	260
78	JNK-mediated Phosphorylation of Cdc25C Regulates Cell Cycle Entry and G2/M DNA Damage Checkpoint. Journal of Biological Chemistry, 2010, 285, 14217-14228.	3.4	65
79	A Role for ATF2 in Regulating MITF and Melanoma Development. PLoS Genetics, 2010, 6, e1001258.	3.5	61
80	Radiation Sensitivity and Tumor Susceptibility in ATM Phospho-Mutant ATF2 Mice. Genes and Cancer, 2010, 1, 316-330.	1.9	17
81	The Siah2-HIF-FoxA2 axis in prostate cancer - new markers and therapeutic opportunities. Oncotarget, 2010, 1, 379-385.	1.8	30
82	Regulation of Endoplasmic Reticulum-associated Degradation by RNF5-dependent Ubiquitination of JNK-associated Membrane Protein (JAMP). Journal of Biological Chemistry, 2009, 284, 12099-12109.	3.4	47
83	Control of p53 multimerization by Ubc13 is JNK-regulated. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12676-12681.	7.1	44
84	The Ubiquitin Ligase Siah2 and the Hypoxia Response. Molecular Cancer Research, 2009, 7, 443-451.	3.4	118
85	Melanomaâ€initiating cells: a compass needed. EMBO Reports, 2009, 10, 965-972.	4.5	17
86	REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A–DDB1 ubiquitin ligase. EMBO Reports, 2009, 10, 866-872.	4.5	126
87	Inhibition of Siah ubiquitin ligase function. Oncogene, 2009, 28, 289-296.	5.9	74
88	Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell and Melanoma Research, 2009, 22, 799-808.	3.3	66
89	Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. Journal of Clinical Investigation, 2009, 119, 650-660.	8.2	327
90	Understanding Signaling Cascades in Melanoma ^{â€} . Photochemistry and Photobiology, 2008, 84, 289-306.	2.5	79

#	Article	IF	Citations
91	Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1674-1679.	7.1	78
92	Regulation of TIP60 by ATF2 Modulates ATM Activation. Journal of Biological Chemistry, 2008, 283, 17605-17614.	3.4	53
93	The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16713-16718.	7.1	90
94	Preclinical Studies of Celastrol and Acetyl Isogambogic Acid in Melanoma. Clinical Cancer Research, 2007, 13, 6769-6778.	7.0	89
95	Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6371-6376.	7.1	103
96	Small Ubiquitin-related Modifier (SUMO)-specific Proteases. Journal of Biological Chemistry, 2007, 282, 26217-26224.	3 . 4	138
97	Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene, 2007, 26, 1477-1483.	5.9	113
98	ATF2 on the double – activating transcription factor and DNA damage response protein. Pigment Cell & Melanoma Research, 2007, 20, 498-506.	3.6	79
99	Rewired ERK-JNK Signaling Pathways in Melanoma. Cancer Cell, 2007, 11, 447-460.	16.8	260
100	RACK1 Recruits STAT3 Specifically to Insulin and Insulin-Like Growth Factor 1 Receptors for Activation, Which Is Important for Regulating Anchorage-Independent Growth. Molecular and Cellular Biology, 2006, 26, 413-424.	2.3	96
101	Regulation of the Ring Finger E3 Ligase Siah2 by p38 MAPK. Journal of Biological Chemistry, 2006, 281, 35316-35326.	3.4	75
102	Regulation of p53 Localization and Activity by Ubc13. Molecular and Cellular Biology, 2006, 26, 8901-8913.	2.3	96
103	Opposite Roles of FAP-1 and Dynamin in the Regulation of Fas (CD95) Translocation to the Cell Surface and Susceptibility to Fas Ligand-mediated Apoptosis. Journal of Biological Chemistry, 2006, 281, 1840-1852.	3.4	62
104	ATM-Dependent Phosphorylation of ATF2 Is Required for the DNA Damage Response. Molecular Cell, 2005, 18, 577-587.	9.7	159
105	Receptor for RACK1 Mediates Activation of JNK by Protein Kinase C. Molecular Cell, 2005, 19, 309-320.	9.7	164
106	The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes and Development, 2004, 18, 2380-2391.	5.9	71
107	Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO Journal, 2004, 23, 322-332.	7.8	205
108	Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene, 2004, 23, 30-38.	5.9	75

#	Article	IF	Citations
109	Siah2 Regulates Stability of Prolyl-Hydroxylases, Controls HIF1α Abundance, and Modulates Physiological Responses to Hypoxia. Cell, 2004, 117, 941-952.	28.9	381
110	Structural Mechanism of the Bromodomain of the Coactivator CBP in p53 Transcriptional Activation. Molecular Cell, 2004, 13, 251-263.	9.7	285
111	Death receptors and melanoma resistance to apoptosis. Oncogene, 2003, 22, 3152-3161.	5.9	201
112	ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene, 2003, 22, 4092-4101.	5.9	129
113	Mdm2: A Regulator of Cell Growth and Death. Advances in Cancer Research, 2003, 89, 1-34.	5.0	52
114	FAP-1 Association with Fas (Apo-1) Inhibits Fas Expression on the Cell Surface. Molecular and Cellular Biology, 2003, 23, 3623-3635.	2.3	100
115	RNF5, a RING Finger Protein That Regulates Cell Motility by Targeting Paxillin Ubiquitination and Altered Localization. Molecular and Cellular Biology, 2003, 23, 5331-5345.	2.3	103
116	Regulation of Fas Expression by STAT3 and c-Jun Is Mediated by Phosphatidylinositol 3-Kinase-AKT Signaling. Journal of Biological Chemistry, 2002, 277, 4932-4944.	3.4	85
117	The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature, 2002, 419, 853-857.	27.8	390
118	Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO Journal, 2002, 21, 5756-5765.	7.8	109
119	Glutathione S-transferase P1–1 (GSTP1–1) Inhibits c-Jun N-terminal Kinase (JNK1) Signaling through Interaction with the C Terminus. Journal of Biological Chemistry, 2001, 276, 20999-21003.	3.4	268
120	Cooperation between STAT3 and c-Jun Suppresses Fas Transcription. Molecular Cell, 2001, 7, 517-528.	9.7	227
121	Distinct pattern of p53 phosphorylation in human tumors. Oncogene, 2001, 20, 3341-3347.	5.9	92
122	ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nature Cell Biology, 2001, 3, 325-330.	10.3	267
123	The Mdm-2 Amino Terminus Is Required for Mdm2 Binding and SUMO-1 Conjugation by the E2 SUMO-1 Conjugating Enzyme Ubc9. Journal of Biological Chemistry, 2001, 276, 40389-40395.	3.4	53
124	Induction of \hat{l}^2 -Transducin Repeat-containing Protein by JNK Signaling and Its Role in the Activation of NF- \hat{l}^2 B. Journal of Biological Chemistry, 2001, 276, 27152-27158.	3.4	65
125	TIP49b, a Regulator of Activating Transcription Factor 2 Response to Stress and DNA Damage. Molecular and Cellular Biology, 2001, 21, 8398-8413.	2.3	70
126	Jun NH 2 -Terminal Kinase Phosphorylation of p53 on Thr-81 Is Important for p53 Stabilization and Transcriptional Activities in Response to Stress. Molecular and Cellular Biology, 2001, 21, 2743-2754.	2.3	276

#	Article	IF	Citations
127	Identification of New JNK Substrate Using ATP Pocket Mutant JNK and a Corresponding ATP Analogue. Journal of Biological Chemistry, 2001, 276, 18090-18095.	3.4	117
128	ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes and Development, 2001, 15, 1067-1077.	5.9	550
129	The SCF HOS/β-TRCP -ROC1 E3 Ubiquitin Ligase Utilizes Two Distinct Domains within CUL1 for Substrate Targeting and Ubiquitin Ligation. Molecular and Cellular Biology, 2000, 20, 1382-1393.	2.3	110
130	Wnt/ \hat{l}^2 -Catenin Signaling Induces the Expression and Activity of \hat{l}^2 TrCP Ubiquitin Ligase Receptor. Molecular Cell, 2000, 5, 877-882.	9.7	172
131	Stability of the ATF2 Transcription Factor Is Regulated by Phosphorylation and Dephosphorylation. Journal of Biological Chemistry, 2000, 275, 12560-12564.	3.4	101
132	Identification of a glutathione-S-transferase effector domain for inhibition of jun kinase, by molecular dynamics. The Protein Journal, 1999, 18, 859-866.	1.1	28
133	GST function in drug and stress response. Drug Resistance Updates, 1999, 2, 143-147.	14.4	101
134	Recruitment of a ROC1–CUL1 Ubiquitin Ligase by Skp1 and HOS to Catalyze the Ubiquitination of lκBα. Molecular Cell, 1999, 3, 527-533.	9.7	323
135	Reciprocal Relationships between the Resistance to Stresses and Cellular Aginga. Annals of the New York Academy of Sciences, 1998, 851, 450-465.	3.8	24
136	CREB and Its Associated Proteins Act as Survival Factors for Human Melanoma Cells. Journal of Biological Chemistry, 1998, 273, 24884-24890.	3.4	147
137	MEKK1/JNK signaling stabilizes and activates p53. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10541-10546.	7.1	449
138	c-Jun NH2-terminal Kinases Target the Ubiquitination of Their Associated Transcription Factors. Journal of Biological Chemistry, 1997, 272, 32163-32168.	3.4	128
139	Conformation-dependent phosphorylation of p53. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1686-1691.	7.1	119
140	Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene, 1997, 15, 2069-2075.	5.9	118
141	Selective inhibition of oncogenic ras- p21 in vivo by agents that block its interaction with jun -N-kinase (JNK) and jun proteins. Implications for the design of selective chemotherapeutic agents. Cancer Chemotherapy and Pharmacology, 1997, 41, 79-85.	2.3	25
142	Elevated binding to URE/PEBP2 during the late stages of NNK and benzo[a]pyrene-induced carcinogenesis in A/J mice. Cancer Letters, 1996, 102, 101-106.	7.2	2
143	Changes in jun N-terminal kinase activation by stress during aging of cultured normal human fibroblasts., 1996, 17, 8-12.		6
144	Activation of c-Jun-NH2-Kinase by UV Irradiation Is Dependent on p21. Journal of Biological Chemistry, 1996, 271, 23304-23309.	3.4	61

#	Article	IF	Citations
145	Ultraviolet light-responsive element (TGACAACA,) -binding proteins in cells of xeroderma pigmentosum patients. Molecular Carcinogenesis, 1995, 14, 111-117.	2.7	5
146	Effects of organic and inorganic selenium compounds on rat mammary tumor cells. International Journal of Cancer, 1995, 63, 428-434.	5.1	60
147	High frequency of K―ras mutations in normal appearing lung tissues and sputum of patients with lung cancer. International Journal of Cancer, 1995, 63, 810-814.	5.1	80
148	Pcr in clinical diagnosis. Journal of Clinical Laboratory Analysis, 1995, 9, 269-283.	2.1	19
149	Ultraviolet irradiation and c-jun over-expression regulates replication of polyoma sequences in WOP cells through a PEBP2 binding site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 90-98.	2.4	3
150	UV Irradiation and Heat Shock Mediate JNK Activation via Alternate Pathways. Journal of Biological Chemistry, 1995, 270, 26071-26077.	3.4	199
151	PEBP2—A Modulator of Polyoma DNA Replication. DNA and Cell Biology, 1994, 13, 865-874.	1.9	5
152	Expression and transcriptional activity of Ap-1, CRE, and URE binding proteins in B16 mouse melanoma subclones. Molecular Carcinogenesis, 1994, 10, 82-87.	2.7	42
153	UV-responsive element (TGACAACA) from rat fibroblasts to human melanomas. Environmental and Molecular Mutagenesis, 1994, 23, 157-163.	2.2	20
154	Glycolytic enzymes as DNA binding proteins. International Journal of Biochemistry & Cell Biology, 1993, 25, 1073-1076.	0.5	93
155	Expression pattern of proteins that bind to the ultraviolet-responsive element (TGACAACA) in human keratinocytes. Molecular Carcinogenesis, 1993, 7, 36-43.	2.7	3
156	GENERAL PURPOSE LAMPS INDUCE POLYOMA DNA REPLICATION IN H3 CELLS. Photochemistry and Photobiology, 1993, 58, 265-269.	2.5	2
157	Functional role of the ultraviolet light responsive element (URE; TGACAACA) in the transcription and replication of polyoma DNA. Nucleic Acids Research, 1992, 20, 4305-4310.	14.5	19
158	Analysis of mutagenic activity and ability to induce replication of polyoma DNA sequences by different model metabolites of the carcinogenic tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1992, 279, 91-101.	1.2	18
159	A simple and efficient method for the purification of specific DNA binding proteins. Nucleic Acids Research, 1992, 20, 1815-1815.	14.5	14
160	Evidence that oocyte maturation induced by an oncogenic ras-p21 protein and insulin is mediated by overlapping yet distinct mechanisms. Experimental Cell Research, 1992, 203, 329-335.	2.6	25
161	Aldolase-DNA interactions in a SEWA cell system. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 20-28.	2.4	34
162	Dietary N-3 fatty acids do not affect induction of Ha-ras mutations in mammary glands of NMU-treated rats. Molecular Carcinogenesis, 1991, 4, 120-128.	2.7	20

#	Article	IF	CITATION
163	Inducible cellular responses to ultraviolet light irradiation and other mediators of DNA damage in mammalian cells. Cell Biology and Toxicology, 1990, 6, 105-126.	5.3	82
164	Polyoma DNA replication dependent upon growth condition of SEWA sarcoma cells. Molecular Carcinogenesis, 1990, 3, 268-272.	2.7	0
165	Antibodies and immune complexes in sera of breast cancer patients. Clinical Immunology Newsletter, 1986, 7, 88-90.	0.1	0
166	Serial circulating immune complex values and development of metastatic disease in breast cancer and malignant melanoma patients. Cancer Immunology, Immunotherapy, 1986, 22, 72-5.	4.2	6