Lars A Brudvig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4242599/publications.pdf

Version: 2024-02-01

74 papers 6,587 citations

33 h-index 71 g-index

75 all docs

75 docs citations

75 times ranked 8881 citing authors

#	Article	IF	CITATIONS
1	Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 2015, 1, e1500052.	10.3	2,541
2	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
3	The restoration of biodiversity: Where has research been and where does it need to go?. American Journal of Botany, 2011, 98, 549-558.	1.7	231
4	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
5	The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19078-19083.	7.1	150
6	Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9328-9332.	7.1	149
7	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
8	Interpreting variation to advance predictive restoration science. Journal of Applied Ecology, 2017, 54, 1018-1027.	4.0	143
9	How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3484-3489.	7.1	127
10	Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 2017, 54, 1070-1079.	4.0	119
11	EDITOR'S CHOICE: Confronting contingency in restoration: management and site history determine outcomes of assembling prairies, but site characteristics and landscape context have little effect. Journal of Applied Ecology, 2013, 50, 1234-1243.	4.0	104
12	Strong legacy of agricultural land use on soils and understory plant communities in longleaf pine woodlands. Forest Ecology and Management, 2013, 310, 944-955.	3.2	93
13	Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science, 2019, 365, 1478-1480.	12.6	92
14	Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition. Ecography, 2011, 34, 257-266.	4.5	79
15	Potential Negative Ecological Effects of Corridors. Conservation Biology, 2014, 28, 1178-1187.	4.7	76
16	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
17	Dispersal and establishment filters influence the assembly of restored prairie plant communities. Restoration Ecology, 2015, 23, 892-899.	2.9	71
18	The present and future of grassland restoration. Restoration Ecology, 2021, 29, e13378.	2.9	71

#	Article	IF	CITATIONS
19	Evaluation of Central North American Prairie Management Based on Species Diversity, Life Form, and Individual Species Metrics. Conservation Biology, 2007, 21, 864-874.	4.7	57
20	Toward prediction in the restoration of biodiversity. Journal of Applied Ecology, 2017, 54, 1013-1017.	4.0	57
21	Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity. Ecology, 2019, 100, e02634.	3.2	57
22	Agricultural landâ€use history and restoration impact soil microbial biodiversity. Journal of Applied Ecology, 2020, 57, 852-863.	4.0	56
23	The influence of habitat fragmentation on multiple plant–animal interactions and plant reproduction. Ecology, 2015, 96, 2669-2678.	3.2	53
24	Trait-Based Filtering of the Regional Species Pool to Guide Understory Plant Reintroductions in Midwestern Oak Savannas, U.S.A Restoration Ecology, 2008, 16, 290-304.	2.9	50
25	Understory plant communities and the functional distinction between savanna trees, forest trees, and pines. Ecology, 2013, 94, 424-434.	3.2	48
26	Can dispersal mode predict corridor effects on plant parasites?. Ecology, 2011, 92, 1559-1564.	3.2	47
27	Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity. Journal of Vegetation Science, 2014, 25, 1438-1449.	2.2	47
28	Dispersal and establishment limitation slows plant community recovery in postâ€agricultural longleaf pine savannas. Journal of Applied Ecology, 2017, 54, 1100-1109.	4.0	46
29	Trait–environment interactions affect plant establishment success during restoration. Ecology, 2020, 101, e02971.	3.2	42
30	Connectivity from a different perspective: comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology, 2016, 97, 1274-1282.	3.2	41
31	Ecosystem multifunctionality increases with beta diversity in restored prairies. Oecologia, 2018, 188, 837-848.	2.0	40
32	Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restoration Ecology, 2019, 27, 128-137.	2.9	40
33	Stand structure, composition, and regeneration dynamics following removal of encroaching woody vegetation from Midwestern oak savannas. Forest Ecology and Management, 2007, 244, 112-121.	3.2	38
34	The removal of woody encroachment restores biophysical gradients in Midwestern oak savannas. Journal of Applied Ecology, 2009, 46, 231-240.	4.0	35
35	Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities. PLoS ONE, 2014, 9, e86604.	2.5	34
36	Prediction and uncertainty in restoration science. Restoration Ecology, 0, , e13380.	2.9	33

#	Article	IF	CITATIONS
37	Agricultural landâ€use history causes persistent loss of plant phylogenetic diversity. Ecology, 2016, 97, 2240-2247.	3.2	31
38	Beta diversity among prairie restorations increases with species pool size, but not through enhanced species sorting. Journal of Ecology, 2014, 102, 1017-1024.	4.0	30
39	Lasting signature of planting year weather on restored grasslands. Scientific Reports, 2020, 10, 5953.	3.3	29
40	Dispersal, not Understory Light Competition, Limits Restoration of Iowa Woodland Understory Herbs. Restoration Ecology, 2011, 19, 24-31.	2.9	27
41	Grassland restoration characteristics influence phylogenetic and taxonomic structure of plant communities and suggest assembly mechanisms. Journal of Ecology, 2019, 107, 2105-2120.	4.0	27
42	Species pool size alters species–area relationships during experimental community assembly. Ecology, 2021, 102, e03231.	3.2	26
43	Patterns of oak regeneration in a Midwestern savanna restoration experiment. Forest Ecology and Management, 2008, 255, 3019-3025.	3.2	25
44	Effects of experimental prescribed fire and tree thinning on oak savanna understory plant communities and ecosystem structure. Forest Ecology and Management, 2020, 464, 118047.	3.2	25
45	Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global metaâ€analysis. Ecology Letters, 2022, 25, 1725-1737.	6.4	25
46	A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.	3.0	23
47	Restoration increases bee abundance and richness but not pollination in remnant and postâ€agricultural woodlands. Ecosphere, 2018, 9, e02435.	2.2	23
48	Superâ€abundant <scp>C₄</scp> grasses are a mixed blessing in restored prairies. Restoration Ecology, 2021, 29, e13281.	2.9	23
49	Woody Encroachment Removal from Midwestern Oak Savannas Alters Understory Diversity across Space and Time. Restoration Ecology, 2010, 18, 74-84.	2.9	22
50	Insects remove more seeds than mammals in firstâ€year prairie restorations. Restoration Ecology, 2019, 27, 1300-1306.	2.9	22
51	The confluence of landscape context and site-level management in determining Midwestern savanna and woodland breeding bird communities. Forest Ecology and Management, 2010, 260, 42-51.	3.2	21
52	Influences of woody encroachment and restoration thinning on overstory savanna oak tree growth rates. Forest Ecology and Management, 2011, 262, 1409-1416.	3.2	19
53	Bee community responses to a gradient of oak savanna restoration practices. Restoration Ecology, 2018, 26, 882-890.	2.9	19
54	Edge-mediated patterns of seed removal in experimentally connected and fragmented landscapes. Landscape Ecology, 2011, 26, 1373-1381.	4.2	18

#	Article	IF	CITATIONS
55	Canopy thinning, not agricultural history, determines early responses of wild bees to longleaf pine savanna restoration. Restoration Ecology, 2020, 28, 138-146.	2.9	18
56	Knowledge sharing for shared success in the decade on ecosystem restoration. Ecological Solutions and Evidence, 2022, 3, e12117.	2.0	18
57	Corridors promote fire via connectivity and edge effects. Ecological Applications, 2012, 22, 937-946.	3.8	17
58	Historical agriculture and contemporary fire frequency alter soil properties in longleaf pine woodlands. Forest Ecology and Management, 2015, 349, 45-54.	3.2	17
59	Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna. Ecology, 2016, 97, 2248-2258.	3.2	17
60	Large ecosystem-scale effects of restoration fail to mitigate impacts of land-use legacies in longleaf pine savannas. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
61	Dynamics and determinants of Quercus alba seedling success following savanna encroachment and restoration. Forest Ecology and Management, 2009, 257, 876-884.	3.2	14
62	Altered beta diversity in postâ€agricultural woodlands: two hypotheses and the role of scale. Ecography, 2015, 38, 614-621.	4.5	14
63	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	3.2	14
64	Historical agriculture alters the effects of fire on understory plant beta diversity. Oecologia, 2015, 177, 507-518.	2.0	13
65	Factors influencing seed mix design for prairie restoration. Restoration Ecology, 2022, 30, e13581.	2.9	13
66	Landscape heterogeneity is key to forecasting outcomes of plant reintroduction. Ecological Applications, 2019, 29, e01850.	3.8	11
67	The Limits to Adaptation in Restored Ecosystems and How Management Can Help Overcome Them. Annals of the Missouri Botanical Garden, 2019, 104, 441-454.	1.3	11
68	Agricultural land-use history does not reduce woodland understory herb establishment. Oecologia, 2019, 189, 1049-1060.	2.0	10
69	A prairie plant community data set for addressing questions in community assembly and restoration. Ecology, 2014, 95, 2363-2363.	3.2	9
70	Interpreting the effects of landscape connectivity on community diversity. Journal of Vegetation Science, 2016, 27, 4-5.	2.2	5
71	Soil resources mediate the strength of species but not trait convergence across grassland restorations. Journal of Applied Ecology, 0, , .	4.0	4
72	Habitat fragmentation alters the distance of abiotic seed dispersal through edge effects and direction of dispersal. Ecology, 2021, 103, e03586.	3.2	4

#	Article	IF	CITATIONS
73	Do southern seed or soil microbes mitigate the effects of warming on establishing prairie plant communities?. Ecological Applications, 2022, 32, e02487.	3.8	1
74	Pollen Limitation and Self-Compatibility in Three Pine Savanna Herbs. Southeastern Naturalist, 2019, 18, 405.	0.4	0