List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4242449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives. Journal of Sol-Gel Science and Technology, 2013, 68, 387-410.	1.1	37
2	Synthesis of BaCe0.9xZrxY0.1O3 nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. International Journal of Hydrogen Energy, 2019, 44, 20345-20354.	3.8	37
3	Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate-temperature solid electrolytes. Ceramics International, 2018, 44, 19879-19884.	2.3	28
4	Effect of the modification of barium titanate on the permittivity of its composites with cyanoethyl ester of polyvinyl alcohol. Glass Physics and Chemistry, 2011, 37, 624-628.	0.2	25
5	Core–Shell Approach to Control Acid–Base Properties of Surface of Dielectric and Permittivity of Its Composite. Chemistry Letters, 2015, 44, 197-199.	0.7	24
6	Sol-gel synthesis and investigation of proton-conducting hybrid organic-inorganic silicophosphate materials. Glass Physics and Chemistry, 2008, 34, 68-76.	0.2	22
7	Relationship between the composition of functional groups on the surface of hybrid silicophosphate membranes and their proton conductivity. Glass Physics and Chemistry, 2014, 40, 97-98.	0.2	22
8	Preparation of zirconia-based nanoceramics with a high degree of tetragonality. Glass Physics and Chemistry, 2014, 40, 352-355.	0.2	22
9	Liquid-phase synthesis and physicochemical properties of xerogels, nanopowders and thin films of the CeO2–Y2O3 system. Russian Journal of Inorganic Chemistry, 2016, 61, 1061-1069.	0.3	20
10	Bioactive coatings based on nanodiamond-modified epoxy siloxane sols for stone materials. Inorganic Materials, 2012, 48, 702-708.	0.2	19
11	Features of the synthesis and the study of nanocrystalline cobalt-nickel spinel. Glass Physics and Chemistry, 2014, 40, 106-113.	0.2	19
12	Synthesis and physicochemical properties of a solid oxide nanocomposite based on a ZrO2–Y2O3–Gd2O3–MgO system. Glass Physics and Chemistry, 2016, 42, 505-511.	0.2	19
13	Resistive humidity sensors based on proton-conducting organic–inorganic silicophosphates doped by polyionenes. Journal of Sol-Gel Science and Technology, 2015, 74, 472-481.	1.1	17
14	Sol-gel preparation of protective and decorative coatings on wood. Journal of Sol-Gel Science and Technology, 2019, 92, 474-483.	1.1	17
15	Silicate nanosized films prepared by the sol-gel method for use in planar technology for fabricating semiconductor gas sensors. Glass Physics and Chemistry, 2005, 31, 201-218.	0.2	16
16	Sol-gel synthesis and investigation of hybrid organic-inorganic borosilicate nanocomposites. Glass Physics and Chemistry, 2006, 32, 218-227.	0.2	15
17	Ceramic nanocomposites based on oxides of transition metals for ionistors. Glass Physics and Chemistry, 2013, 39, 570-578.	0.2	15
18	Synthesis and Physicochemical Properties of Nanopowders and Ceramics in a CeO2–Gd2O3 System. Glass Physics and Chemistry, 2018, 44, 314-321.	0.2	15

#	Article	IF	CITATIONS
19	Synthesis of Magnetic Nanopowders of Iron Oxide: Magnetite and Maghemite. Russian Journal of Inorganic Chemistry, 2020, 65, 426-430.	0.3	13
20	Investigation of the structuring in the Sol-Gel systems based on tetraethoxysilane. Glass Physics and Chemistry, 2006, 32, 448-459.	0.2	11
21	Fractals, morphogenesis and triply periodic minimal surfaces in sol–gel-derived thin films. Journal of Sol-Gel Science and Technology, 2020, 95, 599-608.	1.1	11
22	Synthesis and study of sensor oxide nanofilms in a ZrO2-CeO2 system. Glass Physics and Chemistry, 2014, 40, 362-366.	0.2	10
23	Comparative Study of Powders Based on the ZrO2–Y2O3â€"Đ¡eO2 System Obtained by Various Liquid Phase Methods of Synthesis. Glass Physics and Chemistry, 2018, 44, 433-439.	0.2	10
24	Improving the Safety of the Transportation System and Resource Conservation through the Introduction of Environmentally Safe Protective Coatings. Glass Physics and Chemistry, 2019, 45, 1-9.	0.2	10
25	Synthesis and investigation of nanoceramics based on cobalt metaniobate. Glass Physics and Chemistry, 2014, 40, 578-583.	0.2	9
26	Small-angle neutron scattering study of the mesostructure of bioactive coatings for stone materials based on nanodiamond-modified epoxy siloxane sols. Physics of the Solid State, 2014, 56, 105-113.	0.2	9
27	The sol-gel and hydrophobic properties of antifriction coatings for use in high-speed mini-turbogenerators. Glass Physics and Chemistry, 2014, 40, 319-323.	0.2	9
28	Current state and prospects of manufacturing and operation of methane-based fuel cells (review). Glass Physics and Chemistry, 2016, 42, 1-19.	0.2	9
29	Synthesis and comparative studies of xerogels, aerogels, and powders based on the ZrO2–Y2O3â€"Đ¡eO2 system. Glass Physics and Chemistry, 2017, 43, 368-375.	0.2	9
30	Environmentally Friendly Protective Coatings for Transport. Herald of the Russian Academy of Sciences, 2019, 89, 279-286.	0.2	9
31	Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2〈Y2O3〉–Al2O3 system. Inorganic Materials, 2017, 640-647.	50,2	8
32	Using the Sol–Gel Technology for the Treatment of Barley Seeds. Glass Physics and Chemistry, 2018, 44, 26-32.	0.2	8
33	Modification of submicron barium titanate particles via sol-gel synthesis of interface layers of SiO2 for fabrication of polymer-inorganic composites with improved dielectric properties. Russian Journal of General Chemistry, 2013, 83, 1594-1595.	0.3	7
34	Hydroxyapatite/Anatase Photocatalytic Core–Shell Composite Prepared by Sol‒Gel Processing. Crystallography Reports, 2018, 63, 254-260.	0.1	7
35	Bimetallic Pt/Pd nanoparticles in sol–gel-derived silica films and xerogels. Journal of Sol-Gel Science and Technology, 2019, 92, 367-375.	1.1	7
36	Structure, Properties, and Phytoprotective Functions of Titanium Dioxide Nanopowders and Their Aqueous Suspensions. Russian Journal of Inorganic Chemistry, 2021, 66, 765-772.	0.3	7

#	Article	IF	CITATIONS
37	Biocorrosion, Biofouling, and Advanced Methods of Controlling Them. Protection of Metals and Physical Chemistry of Surfaces, 2022, 58, 129-150.	0.3	7
38	Title is missing!. Glass Physics and Chemistry, 2003, 29, 378-389.	0.2	6
39	Kinetics of structuring in the sol-gel systems based on tetraethoxysilane with organic additives: I. Sols. Glass Physics and Chemistry, 2005, 31, 219-228.	0.2	6
40	Investigation of the physicochemical properties, structure, and composition of nanosized borosilicate films prepared by the sol-gel method. Glass Physics and Chemistry, 2006, 32, 460-470.	0.2	6
41	Sol-gel synthesis and the study of the surface of epoxide-siloxane and epoxide-titanate coatings. Glass Physics and Chemistry, 2013, 39, 540-547.	0.2	6
42	Composition, structure, and morphology of the surface of nanodimensional platinum-containing films obtained from sols. Glass Physics and Chemistry, 2016, 42, 78-86.	0.2	6
43	Composition and structure of platinum-containing thin composite films prepared from silica sols. Russian Journal of Inorganic Chemistry, 2017, 62, 645-653.	0.3	6
44	Synthesis of the study of solid solutions based on the ZrO2–HfO2–Y2O3(CeO2) system. Glass Physics and Chemistry, 2017, 43, 464-470.	0.2	6
45	Improving the Bioresistance of Silica-Organic Coatings by Introducing Soft Biocides Based on Intracomplex Compounds of Triethanolamine. Glass Physics and Chemistry, 2019, 45, 372-378.	0.2	6
46	Synthesis and Research of Functional Layers Based on Titanium Dioxide Nanoparticles and Silica Sols Formed on the Surface of Seeds of Chinese Cabbage. Russian Journal of Applied Chemistry, 2020, 93, 25-34.	0.1	6
47	Chemistry and Manufacturing Technology of Electronic Ink for Electrophoretic Displays (A Review). Russian Journal of Inorganic Chemistry, 2020, 65, 1985-2005.	0.3	6
48	Specific features of the structure of sol-gel silicate films doped with Mn and Pt. Glass Physics and Chemistry, 2006, 32, 228-233.	0.2	5
49	Ways of Controlling Structure and Properties of Sol-Gel-Derived Hybrid Micro- and Nanocomposite Materials. Advances in Science and Technology, 2006, 45, 793.	0.2	5
50	Investigation into the surface morphology of nanosized silicate and hybrid films by optical and atomic-force microscopy. Glass Physics and Chemistry, 2007, 33, 306-314.	0.2	5
51	Sol-gel synthesis and fluorescence properties of hybrid nanocomposite materials doped with the Nile Red dye. Glass Physics and Chemistry, 2008, 34, 63-67.	0.2	5
52	Influence of the composition and structure of epoxy siloxane matrix on the spectral behavior of the nile red dye: I. Sol-gel system based on tetraethoxysilane and a mixture of epoxy resins. Glass Physics and Chemistry, 2009, 35, 87-93.	0.2	5
53	Synthesis and study of oxide and phosphor-silicate nanocomposites for the creation of new-generation supercapacitors. Glass Physics and Chemistry, 2012, 38, 332-338.	0.2	5
54	The formation and study of sensor thin layers based on zirconium and rare earth metal (Ce, Y, and Tb) oxides and the preparation of metal-oxide-semiconductor structures based on them. Glass Physics and Chemistry, 2014, 40, 629-634.	0.2	5

#	Article	IF	CITATIONS
55	Structure and proton conductivity of a hydrated Nafion-115 membrane. Glass Physics and Chemistry, 2016, 42, 637-639.	0.2	5
56	Porous ceramics based on the ZrO2(Y2O3)–Al2O3 system for filtration membranes. Glass Physics and Chemistry, 2016, 42, 408-413.	0.2	5
57	Synthesis and study of mesoporous xerogels and nanopowders of a metastable solid solution 97ZrO2–3Y2O3 for the fabrication of catalyst substrates. Glass Physics and Chemistry, 2016, 42, 277-283.	0.2	5
58	Electroconducting ceramics based on In2O3, CdO, and LaCrO3. Glass Physics and Chemistry, 2017, 43, 276-281.	0.2	5
59	Liquid-Phase Synthesis and Investigation of Powders Based on Zirconium Dioxide. Glass Physics and Chemistry, 2018, 44, 626-631.	0.2	5
60	Influence of Xerogel Synthesis Conditions in the ZrO2–Y2O3–CeO2 System on the Properties of Powders and Ceramics Based on Them. Glass Physics and Chemistry, 2020, 46, 176-180.	0.2	5
61	Controlling the Sorption Activity of Clinoptilolites with Mechanical Activation. Inorganic Materials, 2021, 57, 399-408.	0.2	5
62	Specific features of structuring of film-forming silica sols in the presence of boric acid and four-arm polyol with hyperbranched structure. Russian Journal of Applied Chemistry, 2010, 83, 2128-2134.	0.1	4
63	Modification of the glass surface by titanium dioxide films synthesized through the sol–gel method. Class Physics and Chemistry, 2011, 37, 150-156.	0.2	4
64	Sol-Gel synthesis of solid solutions based on zirconium and hafnium dioxides. Glass Physics and Chemistry, 2011, 37, 505-511.	0.2	4
65	Study of the lyophilic properties and cytotoxity of nanostructured bioceramics based on the ZrO2–Y2O3â€"Đ¡eO2 and ZrO2–Y2O3–Al2O3 systems. Glass Physics and Chemistry, 2016, 42, 609-614.	0.2	4
66	Neodymium nickelate—A cathode material for fuel cells. Glass Physics and Chemistry, 2016, 42, 95-99.	0.2	4
67	Sol-gel synthesis and study of the hydrophobicity of coatings prepared using modified aerosils. Glass Physics and Chemistry, 2016, 42, 194-201.	0.2	4
68	Heat-Resistant Protective Organosilicate Coatings for Nuclear Energy. Glass Physics and Chemistry, 2020, 46, 357-359.	0.2	4
69	SOL-GEL TECHNOLOGY FOR PREPARATION OF SPIN-ON GLASS FILMS IN A CYCLE OF MANUFACTURING GAS SENSORS. , 2003, , .		4
70	Improvement of the Physicomechanical and Corrosion-Protective Properties of Coatings Based on a Cycloaliphatic Epoxy Matrix. Russian Journal of Applied Chemistry, 2021, 94, 1489-1498.	0.1	4
71	Formation of Catalytic Layers from Tetraethoxysilane-Based Sols for Use in Polymer Fuel Cells. Glass Physics and Chemistry, 2004, 30, 98-100.	0.2	3
72	Investigation into the influence of organic modifiers and ultradispersed hybrid fillers on the structure and properties of glass-ceramic coatings prepared by the sol-gel method. Glass Physics and Chemistry, 2006, 32, 439-447.	0.2	3

#	Article	IF	CITATIONS
73	Evolution of the properties of sol-gel derived hybrid organic-inorganic xerogels and coatings in the course of heat treatment. Glass Physics and Chemistry, 2006, 32, 656-665.	0.2	3
74	Influence of a high-frequency field on the formation of photosensitive thin-film materials synthesized by the sol-gel method. Glass Physics and Chemistry, 2007, 33, 340-343.	0.2	3
75	Thermal stability of proton-conducting silicophosphate materials formed by sol-gel method. Russian Journal of Electrochemistry, 2009, 45, 609-614.	0.3	3
76	Features of simultaneous diffusion of boron and gadolinium in silicon from nanoscale hybrid organic-inorganic films. Semiconductors, 2009, 43, 1394-1399.	0.2	3
77	Heterogeneous Sol-Gel Systems – Derived Ceramics. Advances in Science and Technology, 2010, 63, 131-140.	0.2	3
78	Improvement of dielectric characteristics of cyanoethyl ether of polyvinyl alcohol-BaTiO3 composites by modifying filler surface. Glass Physics and Chemistry, 2013, 39, 597-601.	0.2	3
79	Electrochemical synthesis of polythiophene–polyacrylamide composite coatings used for pseudocapacitors. Glass Physics and Chemistry, 2016, 42, 635-636.	0.2	3
80	Effect of biocidal additives on the mesostructure of epoxy–siloxane bioactive coatings. Journal of Surface Investigation, 2016, 10, 113-122.	0.1	3
81	Preparation and Characterization of Nanoceramics for Solid Oxide Fuel Cells. Inorganic Materials, 2018, 54, 79-86.	0.2	3
82	Effect of t-ZrO2-Based Ceramic Samples on the Condition of Muscular and Connecting Tissues in Experimental Animals with Intramuscular Introduction. Inorganic Materials: Applied Research, 2019, 10, 1109-1114.	0.1	3
83	Influence of Silica Sols and Magnetic Nanopowders of Iron Oxides on Barkley Seeds during Their Interaction with Water. Russian Journal of Inorganic Chemistry, 2020, 65, 626-629.	0.3	3
84	Development and Research of Electroactive Pseudocapacitor Electrode Pastes Based on MnO2. Glass Physics and Chemistry, 2020, 46, 96-101.	0.2	3
85	Comparative Characteristics of Xerogels Based on Zirconium Dioxide Obtained by the Method of Joint Deposition of Hydroxides in a Volume and a Microreactor with Counter Swirled Flows. Glass Physics and Chemistry, 2021, 47, 653-656.	0.2	3
86	Synthesis of Porous Inorganic Materials from Sol-Gel Precursors by Cryochemical Sublimation. Glass Physics and Chemistry, 2005, 31, 352-355.	0.2	2
87	Kinetics of structuring in the sol-gel systems based on tetraethoxysilane with organic additives: II. Gels. Glass Physics and Chemistry, 2006, 32, 666-673.	0.2	2
88	Investigation of the parameters of layers prepared through diffusion of boron and gadolinium from silicate and hybrid films into silicon wafers. Glass Physics and Chemistry, 2009, 35, 102-111.	0.2	2
89	Investigation of the surface of silica films doped with Fe and Co. Glass Physics and Chemistry, 2009, 35, 479-483.	0.2	2
90	Development of the technology for preparing and storing hydrogen with the use of nanostructured materials for an autonomous integrated wind power plant. Glass Physics and Chemistry, 2009, 35, 491-503.	0.2	2

#	Article	IF	CITATIONS
91	Physicochemical and electrophysical properties of glass-ceramic composite coatings prepared from doped "silica sol-chromium oxide―sol-gel systems. Glass Physics and Chemistry, 2010, 36, 446-454.	0.2	2
92	Synthesis and study of nanoceramics of the spinel class. Glass Physics and Chemistry, 2015, 41, 650-655.	0.2	2
93	On the influence of detonation nanodiamond dopants on phase content and hydration features of portland cement materials. Glass Physics and Chemistry, 2015, 41, 206-211.	0.2	2
94	The dual role of SiO2 as a pore former and sintering aid in the preparation of the porous ceramic in ZrO2-In2O3 system. Glass Physics and Chemistry, 2015, 41, 431-436.	0.2	2
95	Study of rheological properties of sol–gel systems based on tetraethoxysilanes in the presence of boric acid, gadolinium nitrate, and organic polyols. Glass Physics and Chemistry, 2016, 42, 50-58.	0.2	2
96	Preparation and properties of porous ceramics based on alumomagnesium spinel and zirconium dioxide. Inorganic Materials: Applied Research, 2017, 8, 781-787.	0.1	2
97	Effect of Highly Porous Bioceramics Based on ZrO2–Y2O3–CeO2 System on the Biological Tissues of Experimental Animals. Inorganic Materials: Applied Research, 2021, 12, 370-376.	0.1	2
98	Synthesis and Research Using Computer Simulation of Proton-Conducting Solid Electrolytes Based on Hafnate and Barium Zirconate. Glass Physics and Chemistry, 2021, 47, 366-371.	0.2	2
99	Obtaining ZrO2–3 mol % Y2O3 Ceramics with Various Degrees of Tetragonality and Studying Low Temperature Degradation. Glass Physics and Chemistry, 2021, 47, 382-389.	0.2	2
100	Liquid-Phase Synthesis and Physical and Chemical Properties of Ceramic Electrolyte Nanomaterials in the CeO2–Sm2O3 System for Solid Oxide Fuel Cells. Inorganic Materials: Applied Research, 2020, 11, 1229-1235.	0.1	2
101	Microbiologically induced deterioration and environmentally friendly protection of wood products. , 2022, , 283-321.		2
102	Sol-Gel Synthesis and Structure of Nanocomposites Based on Tetraethoxysilane and Boron Compounds. Glass Physics and Chemistry, 2021, 47, S48-S62.	0.2	2
103	Synthesis of Iron Oxide Magnetic Nanoparticles and Their Effect on Growth, Productivity, and Quality of Tomato. Glass Physics and Chemistry, 2021, 47, S67-S74.	0.2	2
104	The Influence of Ultrasonic Treatment on the Gelation in a Tetraethoxysilane–Boric Acid System. Glass Physics and Chemistry, 2004, 30, 471-472.	0.2	1
105	Properties of proton-conducting materials formed by the sol-gel method. Russian Journal of Applied Chemistry, 2009, 82, 986-990.	0.1	1
106	Influence of the composition and structure of epoxy siloxane matrix on the spectral behavior of the nile red dye: II. Sol-gel system based on tetraethoxysilane and glycidoxypropyltrimethoxysilane. Glass Physics and Chemistry, 2009, 35, 170-175.	0.2	1
107	Sol-gel film structures based on titanate ferroelectric nanoparticles. , 2009, , .		1
108	Electrophoresis in the sol-gel formation of heterophase thin-film coatings. Glass Physics and Chemistry, 2011, 37, 545-548.	0.2	1

#	Article	IF	CITATIONS
109	Synthesis and study of film-forming composites based on silica sols and dispersed oxides for the fabrication of glass ceramic electro-insulating coatings. Glass Physics and Chemistry, 2015, 41, 607-614.	0.2	1
110	Partially stabilized zirconium dioxide xerogels and nanocrystalline ceramics for restorative dentistry. Inorganic Materials: Applied Research, 2015, 6, 485-492.	0.1	1
111	Synthesis and study of solid solutions based on indium oxide in the In2O3–ZrO2(HfO2) systems as a material for fuel cell interconnectors. Inorganic Materials: Applied Research, 2016, 7, 658-663.	0.1	1
112	Composite materials based on oxides of d and f elements and carbon layers. Inorganic Materials: Applied Research, 2017, 8, 254-259.	0.1	1
113	Methods and Approaches of the Sol–Gel Technology for the Surface Modification of Aluminum Oxide Powders. Glass Physics and Chemistry, 2017, 43, 571-584.	0.2	1
114	Investigating the Relationship between the Conditions of Polythiophene Electrosynthesis and the Pseudocapacitive Properties of Polythiophene-Based Electrodes. Glass Physics and Chemistry, 2019, 45, 281-290.	0.2	1
115	Preparation and Study of Porous Ceramics Based on Zirconium Dioxide for Endoprosthesis. Glass Physics and Chemistry, 2019, 45, 551-554.	0.2	1
116	Application of BaTiO3/CoFe2O4–SiO2 Structure to Control the Electrical Properties of Composites. Glass Physics and Chemistry, 2019, 45, 513-517.	0.2	1
117	Production of Chemically Pure Zirconia-Based Nanoceramics in the ZrO2(Y2O3)–Al2O3 System for Restorative Dentistry. Theoretical Foundations of Chemical Engineering, 2019, 53, 848-854.	0.2	1
118	Synthesis and Sensor Characteristics of Nanoscale Thin Films in the In2O3–SnO2 and Y2O3–TbOx(CeOx) Systems. Inorganic Materials: Applied Research, 2020, 11, 441-447.	0.1	1
119	Development and Research on Ion-Conducting Membranes Based on Cross-Linked Polyvinyl Alcohol. Glass Physics and Chemistry, 2021, 47, 173-180.	0.2	1
120	Ways of Controlling Structure and Properties of Sol-Gel-Derived Hybrid Micro- and Nanocomposite Materials. Advances in Science and Technology, 0, , 793-798.	0.2	1
121	Proton-Conducting Ceramics Based on Barium Hafnate and Cerate Doped with Zirconium, Yttrium, and Ytterbium Oxides for Fuel Cell Electrolytes. Inorganic Materials: Applied Research, 2021, 12, 1265-1270.	0.1	1
122	New biologically active agents based on carbon and silicon nanostructures: The basis of creation and application in crop production. AIP Conference Proceedings, 2022, , .	0.3	1
123	Study of the Color Characteristics of Organosilicate Coatings with Various Pigments Under a Tropical Marine Climate. Glass Physics and Chemistry, 2021, 47, 671-675.	0.2	1
124	Morphology and Structure of a Charge of Detonation Nanodiamond Doped with Boron. Glass Physics and Chemistry, 2022, 48, 43-49.	0.2	1
125	Effect of Liquid-Phase Synthesis Method of Nanopowders on Microstructure and Physicochemical Properties of Ceramics in CeO2–Sm2O3 System. Inorganic Materials: Applied Research, 2022, 13, 501-507.	0.1	1
126	The Development of Ion-Conducting Hybrid Membranes Based on Cross-Linked Poly(vinyl alcohol) Using a Latin Square. Glass Physics and Chemistry, 2021, 47, 49-55.	0.2	0

#	Article	IF	CITATIONS
127	Development of a Pt@C-Based Functional Composite Catalytic Material for Solid-Polymer Fuel Cell Electrodes. Russian Journal of Inorganic Chemistry, 2021, 66, 773-776.	0.3	0
128	Binary Inhibitory Anti-Rust Paint. E3S Web of Conferences, 2021, 225, 05006.	0.2	0
129	Sol-Gel Derived TiO2 and Epoxy-Titanate Protective Coatings: Structure, Property, Fungicidal Activity and Biomineralization Effects. Lecture Notes in Earth System Sciences, 2020, , 619-638.	0.5	0
130	Synthesis and Investigation of Ceramic Materials for Medium-Temperature Solid Oxide Fuel Cells. , 0, , .		0