Hisao Honda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4242191/publications.pdf Version: 2024-02-01

Ηιελο Ηονισλ

#	Article	IF	CITATIONS
1	Computational approaches for simulating luminogenesis. Seminars in Cell and Developmental Biology, 2022, 131, 173-185.	5.0	4
2	Left-handed cardiac looping by cell chirality isÂmediated by position-specific convergent extensions. Biophysical Journal, 2021, 120, 5371-5383.	0.5	8
3	The Chiral Looping of the Embryonic Heart Is Formed by the Combination of Three Axial Asymmetries. Biophysical Journal, 2020, 118, 742-752.	0.5	18
4	Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing. Biophysical Journal, 2018, 114, 958-967.	0.5	2
5	Self-organization at the first stage of honeycomb construction: Analysis of an attachment-excavation model. PLoS ONE, 2018, 13, e0205353.	2.5	14
6	Chiral cell sliding drives left-right asymmetric organ twisting. ELife, 2018, 7, .	6.0	34
7	The world of epithelial sheets. Development Growth and Differentiation, 2017, 59, 306-316.	1.5	23
8	Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium. Journal of Cell Biology, 2016, 212, 561-575.	5.2	42
9	Cell models lead to understanding of multi-cellular morphogenesis consisting of successive self-construction of cells. Journal of Biochemistry, 2015, 157, 129-136.	1.7	33
10	Planar Cell Polarity Links Axes of Spatial Dynamics in Neural-Tube Closure. Cell, 2012, 149, 1084-1097.	28.9	448
11	Two different mechanisms of planar cell intercalation leading to tissue elongation. Developmental Dynamics, 2008, 237, 1826-1836.	1.8	74
12	Computer simulation of emerging asymmetry in the mouse blastocyst. Development (Cambridge), 2008, 135, 1407-1414.	2.5	75
13	Competitive interactions between retinal ganglion axons for tectal targets explain plasticity of retinotectal projection in the servomechanism model of retinotectal mapping. Development Growth and Differentiation, 2004, 46, 425-437.	1.5	14
14	A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. Journal of Theoretical Biology, 2004, 226, 439-453.	1.7	179
15	Competition between Retinal Ganglion Axons for Targets under the Servomechanism Model Explains Abnormal Retinocollicular Projection of Eph Receptor-Overexpressing or Ephrin-Lacking Mice. Journal of Neuroscience, 2003, 23, 10368-10377.	3.6	32
16	Formation and maintenance of distinctive cell patterns by coexpression of membrane-bound ligands and their receptors. Developmental Dynamics, 2002, 223, 180-192.	1.8	20
17	A dynamic cell model for the formation of epithelial tissues. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 699-719.	0.6	242
18	Differentiation of wing epidermal scale cells in a butterfly under the lateral inhibition modelappearance of large cells in a polygonal pattern. Acta Biotheoretica, 2000, 48, 121-136.	1.5	26

Hisao Honda

#	Article	IF	CITATIONS
19	Topographic Mapping in the Retinotectal Projection by Means of Complementary Ligand and Receptor Gradients: a Computer Simulation Study. Journal of Theoretical Biology, 1998, 192, 235-246.	1.7	37
20	Spontaneous Architectural Organization of Mammalian Epidermis from Random Cell Packing. Journal of Investigative Dermatology, 1996, 106, 312-315.	0.7	26
21	Distribution of differentiated cells in a cell sheet under the lateral inhibition rule of differentiation. Journal of Theoretical Biology, 1991, 153, 287-300.	1.7	24
22	Geometrical analysis of cells becoming organized into a tensile sheet, the blastular wall, in the starfish. Differentiation, 1984, 25, 16-22.	1.9	19
23	A computer simulation of cell stacking for even thickness in mammalian epidermis. Journal of Theoretical Biology, 1984, 111, 625-633.	1.7	9
24	Geometrical Models for Cells in Tissues. International Review of Cytology, 1983, 81, 191-248.	6.2	174
25	How much does the cell boundary contract in a monolayered cell sheet?. Journal of Theoretical Biology, 1980, 84, 575-588.	1.7	105
26	Establishment of epidermal cell columns in mammalian skin: Computer simulation. Journal of Theoretical Biology, 1979, 81, 745-759.	1.7	28
27	Description of cellular patterns by Dirichlet domains: The two-dimensional case. Journal of Theoretical Biology, 1978, 72, 523-543	1.7	227