Josie E Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytochrome P450 168A1 from Pseudomonas aeruginosa is involved in the hydroxylation of biologically relevant fatty acids. PLoS ONE, 2022, 17, e0265227.	2.5	2
2	Titration of C-5 Sterol Desaturase Activity Reveals Its Relationship to Candida albicans Virulence and Antifungal Susceptibility Is Dependent upon Host Immune Status. MBio, 2022, , e0011522.	4.1	1
3	InÂvivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clinical Microbiology and Infection, 2022, 28, 838-843.	6.0	31
4	Insights in the molecular mechanisms of an azole stress adapted laboratory-generated Aspergillus fumigatus strain. Medical Mycology, 2021, 59, 763-772.	0.7	3
5	Species-Specific Differences in C-5 Sterol Desaturase Function Influence the Outcome of Azole Antifungal Exposure. Antimicrobial Agents and Chemotherapy, 2021, 65, e0104421.	3.2	1
6	Loss-of-Function <i>ROX1</i> Mutations Suppress the Fluconazole Susceptibility of <i>upc2A</i> Δ Mutation in Candida glabrata, Implicating Additional Positive Regulators of Ergosterol Biosynthesis. MSphere, 2021, 6, e0083021.	2.9	3
7	Mutations in <i>TAC1B</i> : a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. MBio, 2020, 11, .	4.1	101
8	Smallâ€Molecule Inhibitors Targeting Sterol 14αâ€Đemethylase (CYP51): Synthesis, Molecular Modelling and Evaluation Against <i>Candida albicans</i> . ChemMedChem, 2020, 15, 1294-1309.	3.2	17
9	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	12.8	100
10	Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis. International Journal of Pharmaceutics, 2020, 579, 119102.	5.2	14
11	Isavuconazole and voriconazole inhibition of sterol 14α-demethylases (CYP51) from Aspergillus fumigatus and Homo sapiens. International Journal of Antimicrobial Agents, 2019, 54, 449-455.	2.5	9
12	Mutations in <i>hmg1</i> , Challenging the Paradigm of Clinical Triazole Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	4.1	85
13	The Evolution of Azole Resistance in <i>Candida albicans</i> Sterol 14α-Demethylase (CYP51) through Incremental Amino Acid Substitutions. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	32
14	Comparative Genomics for the Elucidation of Multidrug Resistance in Candida lusitaniae. MBio, 2019, 10, .	4.1	37
15	<i>ERG6</i> and <i>ERG2</i> Are Major Targets Conferring Reduced Susceptibility to Amphotericin B in Clinical <i>Candida glabrata</i> Isolates in Kuwait. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	44
16	Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1â^'/â^' mouse brain and plasma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 191-211.	2.4	29
17	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of a Novel and Long-Acting Fungicidal Azole, PC1244, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	24
18	Loss of Upc2p-Inducible <i>ERG3</i> Transcription Is Sufficient To Confer Niche-Specific Azole Resistance without Compromising Candida albicans Pathogenicity. MBio, 2018, 9, .	4.1	15

Josie E Parker

#	Article	IF	CITATIONS
19	Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1164-1178.	2.4	14
20	<i>In Vitro</i> and <i>In Vivo</i> Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	60
21	The Tetrazole VT-1161 Is a Potent Inhibitor of Trichophyton rubrum through Its Inhibition of T. rubrum CYP51. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
22	Loss of C-5 Sterol Desaturase Activity Results in Increased Resistance to Azole and Echinocandin Antifungals in a Clinical Isolate of Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	42
23	Target Abundance-Based Fitness Screening (TAFiS) Facilitates Rapid Identification of Target-Specific and Physiologically Active Chemical Probes. MSphere, 2017, 2, .	2.9	10
24	Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa. Scientific Reports, 2016, 6, 27690.	3.3	14
25	The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme. Antimicrobial Agents and Chemotherapy, 2016, 60, 4530-4538.	3.2	57
26	Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence. G3: Genes, Genomes, Genetics, 2016, 6, 3455-3465.	1.8	9
27	Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14î±-Demethylase (CYP51). Antimicrobial Agents and Chemotherapy, 2015, 59, 4707-4713.	3.2	33
28	Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase. Applied and Environmental Microbiology, 2015, 81, 3379-3386.	3.1	13
29	Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 5942-5950.	3.2	75
30	Analysis of cytochrome b5 reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genetics and Biology, 2015, 82, 69-84.	2.1	21
31	Azole fungicidesÂ-Âunderstanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science, 2015, 71, 1054-1058.	3.4	214
32	In VitroBiochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 7771-7778.	3.2	32
33	Resistance to antifungals that target CYP51. Journal of Chemical Biology, 2014, 7, 143-161.	2.2	146
34	Clotrimazole as a Potent Agent for Treating the Oomycete Fish Pathogen Saprolegnia parasitica through Inhibition of Sterol 14α-Demethylase (CYP51). Applied and Environmental Microbiology, 2014, 80, 6154-6166.	3.1	41
35	Molecular Mechanisms of Drug Resistance in Clinical Candida Species Isolated from Tunisian Hospitals. Antimicrobial Agents and Chemotherapy, 2013, 57, 3182-3193.	3.2	96
36	Azole Affinity of Sterol 14î±-Demethylase (CYP51) Enzymes from Candida albicans and Homo sapiens. Antimicrobial Agents and Chemotherapy, 2013, 57, 1352-1360.	3.2	120

Josie E Parker

#	Article	IF	CITATIONS
37	Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase. Applied and Environmental Microbiology, 2013, 79, 1639-1645.	3.1	73
38	Characterization of the sterol 14αâ€demethylases of <i>Fusarium graminearum</i> identifies a novel genusâ€specific <scp>CYP</scp> 51 function. New Phytologist, 2013, 198, 821-835.	7.3	146
39	Discovery of a Novel Dual Fungal CYP51/Human 5-Lipoxygenase Inhibitor: Implications for Anti-Fungal Therapy. PLoS ONE, 2013, 8, e65928.	2.5	17
40	Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida glabrata Harboring a Missense Mutation in <i>ERG11</i> and Exhibiting Cross-Resistance to Azoles and Amphotericin B. Antimicrobial Agents and Chemotherapy, 2012, 56, 4223-4232.	3.2	90
41	Two Clinical Isolates of Candida glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in <i>ERG2</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 6417-6421.	3.2	62
42	S279 Point Mutations in Candida albicans Sterol 14-α Demethylase (CYP51) Reduce <i>In Vitro</i> Inhibition by Fluconazole. Antimicrobial Agents and Chemotherapy, 2012, 56, 2099-2107.	3.2	25
43	Mechanism of Binding of Prothioconazole to <i>Mycosphaerella graminicola</i> CYP51 Differs from That of Other Azole Antifungals. Applied and Environmental Microbiology, 2011, 77, 1460-1465.	3.1	62
44	Impact of Recently Emerged Sterol 14α-Demethylase (CYP51) Variants of Mycosphaerella graminicola on Azole Fungicide Sensitivity. Applied and Environmental Microbiology, 2011, 77, 3830-3837.	3.1	107
45	Molecular Modelling of the Emergence of Azole Resistance in Mycosphaerella graminicola. PLoS ONE, 2011, 6, e20973.	2.5	74
46	Expression, Purification, and Characterization of Aspergillus fumigatus Sterol 14-α Demethylase (CYP51) Isoenzymes A and B. Antimicrobial Agents and Chemotherapy, 2010, 54, 4225-4234.	3.2	73
47	Complementation of a <i>Saccharomyces cerevisiae</i> ERG11/CYP51 (Sterol 14α-Demethylase) Doxycycline-Regulated Mutant and Screening of the Azole Sensitivity of <i>Aspergillus fumigatus</i> Isoenzymes CYP51A and CYP51B. Antimicrobial Agents and Chemotherapy, 2010, 54, 4920-4923.	3.2	43
48	A Clinical Isolate of <i>Candida albicans</i> with Mutations in <i>ERG11</i> (Encoding Sterol) Tj ETQq0 0 0 rgBT Amphotericin B. Antimicrobial Agents and Chemotherapy, 2010, 54, 3578-3583.	/Overlock 3.2	10 Tf 50 30 152
49	Azole Binding Properties of <i>Candida albicans</i> Sterol 14-α Demethylase (CaCYP51). Antimicrobial Agents and Chemotherapy, 2010, 54, 4235-4245.	3.2	97
50	Identification and Characterization of Four Azole-Resistant <i>erg3</i> Mutants of <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4527-4533.	3.2	150
51	Identification, Characterization, and Azole-Binding Properties of Mycobacterium smegmatis CYP164A2, a Homolog of ML2088, the Sole Cytochrome P450 Gene of Mycobacterium leprae. Antimicrobial Agents and Chemotherapy, 2009, 53, 1157-1164.	3.2	20
52	Conservation and cloning of CYP51: a sterol 14α-demethylase from Mycobacterium smegmatis. Biochemical and Biophysical Research Communications, 2003, 301, 558-563.	2.1	33