Jose Santos Lopez Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241410/publications.pdf

Version: 2024-02-01

567281 414414 1,097 50 15 32 citations h-index g-index papers 50 50 50 984 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Review of the Influence of Oceanographic and Geometric Parameters on Oscillating Water Columns. Journal of Marine Science and Engineering, 2022, 10, 226.	2.6	8
2	Optimizing Wave Overtopping Energy Converters by ANN Modelling: Evaluating the Overtopping Rate Forecasting as the First Step. Sustainability, 2021, 13, 1483.	3.2	7
3	Comparison of Existing Equations for the Design of Crown Walls: Application to the Case Study of Ericeira Breakwater (Portugal). Journal of Marine Science and Engineering, 2021, 9, 285.	2.6	4
4	Offshore Wind Power Basics. , 2021, , .		0
5	Application of the BIM Method in the Management of the Maintenance in Port Infrastructures. Journal of Marine Science and Engineering, 2020, 8, 981.	2.6	14
6	Wave energy assessment related to wave energy convertors in the coastal waters of China. Energy, 2020, 202, 117741.	8.8	23
7	Offshore Wind Farms. Journal of Marine Science and Engineering, 2020, 8, 120.	2.6	5
8	Impact of Offshore Wind Farms on Marine Ecosystems, Pelagic Species and Fishing. Journal of Coastal Research, 2020, 95, 118.	0.3	4
9	Evolution of Extreme Waves in Cadiz (SW Spain). Journal of Coastal Research, 2020, 95, 272.	0.3	1
10	New detected uncertainties in the design of foundations for offshore Wind Turbines. Renewable Energy, 2019, 131, 667-677.	8.9	17
11	Preliminary Design for Wave Run-Up in Offshore Wind Farms: Comparison between Theoretical Models and Physical Model Tests. Energies, 2019, 12, 492.	3.1	3
12	What about Marine Renewable Energies in Spain?. Journal of Marine Science and Engineering, 2019, 7, 249.	2.6	19
13	Gravity-Based Foundations in the Offshore Wind Sector. Journal of Marine Science and Engineering, 2019, 7, 64.	2.6	28
14	Feasibility Study of the Installation of Wave Energy Converters in Existing Breakwaters in the North of Spain. Applied Sciences (Switzerland), 2019, 9, 5225.	2.5	9
15	Riprap Scour Protection for Monopiles in Offshore Wind Farms. Journal of Marine Science and Engineering, 2019, 7, 440.	2.6	18
16	Foundations in Offshore Wind Farms: Evolution, Characteristics and Range of Use. Analysis of Main Dimensional Parameters in Monopile Foundations. Journal of Marine Science and Engineering, 2019, 7, 441.	2.6	54
17	Action Strategy for Studying Marine and Coastal Works with Climate Change on the Horizon. Journal of Coastal Research, 2018, 85, 506-510.	0.3	5
18	Recent History, Types, and Future of Modern Caisson Technology: The Way to More Sustainable Practices. Sustainability, 2018, 10, 3839.	3.2	10

#	Article	IF	Citations
19	Wave Energy Potential Assessment and Feasibility Analysis of Wave Energy Converters. Case Study: Spanish Coast. Journal of Coastal Research, 2018, 85, 1291-1295.	0.3	5
20	A Modified Method for Assessing Hydrodynamic Loads in the Design of Gravity-Based Structures for Offshore Wind Energy. Journal of Coastal Research, 2018, 85, 931-935.	0.3	2
21	Surveys Applied to the Improvements of Beaches. Case Studies: Las Canteras, Hoya Pozuelo and Salinetas (Gran Canaria Island, Spain). Journal of Coastal Research, 2018, 85, 1441-1445.	0.3	1
22	Crown Walls in Mass and Reinforced Concrete: The Way to Aesthetics in Maritime Works., 2018,,.		1
23	From Julius Caesar to Sustainable Composite Materials: A Passage through Port Caisson Technology. Sustainability, 2018, 10, 1225.	3.2	3
24	A New Classification of Wave Energy Converters Used for Selection of Devices. Journal of Coastal Research, 2018, 85, 1286-1290.	0.3	8
25	Monopiles in offshore wind: Preliminary estimate of main dimensions. Ocean Engineering, 2017, 133, 253-261.	4.3	89
26	The Gigantism of Public Works in China in the Twenty-First Century. Sustainability, 2017, 9, 1581.	3.2	5
27	The Impact of Public Works in Spain: Natural, constructed and destroyed landscape. Revista De La Construccion, 2017, 16, 82-91.	0.5	0
28	Analysing the Effects of Flood-Resilience Technologies in Urban Areas Using a Synthetic Model Approach. ISPRS International Journal of Geo-Information, 2016, 5, 202.	2.9	18
29	Hydrodynamic Regimes in Offshore Wind Farms. Journal of Coastal Research, 2016, 75, 892-896.	0.3	4
30	New Coastal Regulation in Spain. A roadmap to a better approach to coastal environment. Journal of Coastal Research, 2016, 75, 662-666.	0.3	3
31	Review of coastal Land Reclamation situation in the World. Journal of Coastal Research, 2016, 75, 667-671.	0.3	65
32	Software for Predicting Hydrodynamic Pressures on Offshore Pile Foundations: The Next Step in Ocean Energy Development. Journal of Coastal Research, 2016, 75, 841-845.	0.3	4
33	Evaluation of wave loads on a new type of perforated caisson. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2016, 169, 124-139.	0.2	2
34	Offshore Wind Foundation Design: Some Key Issues. Journal of Energy Resources Technology, Transactions of the ASME, 2015, 137, .	2.3	34
35	Design of Scour Protection Systems in Offshore Wind Farms. Journal of Energy Resources Technology, Transactions of the ASME, 2015, 137, .	2.3	4
36	Gravity based support structures for offshore wind turbine generators: Review of the installation process. Ocean Engineering, 2015, 110, 281-291.	4.3	54

#	Article	IF	Citations
37	Improvement of theoretical storm characterization for different climate conditions. Coastal Engineering, 2015, 96, 71-80.	4.0	19
38	Discussion: Comparative study of breakwater crown wall $\hat{a} \in$ "calculation methods. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2014, 167, 154-155.	0.2	2
39	Storm evolution characterization for analysing stone armour damage progression. Coastal Engineering, 2014, 85, 1-11.	4.0	15
40	Uncertainties in the design of support structures and foundations for offshore wind turbines. Renewable Energy, 2014, 63, 125-132.	8.9	81
41	Runup variability due to time dependence and stochasticity in the beach profiles: two extreme cases of the Spanish coast. Journal of Coastal Research, $2014, 70, 1$.	0.3	6
42	Analysis of wave attenuation and shore protection of a bulk carrier ship performing as a detached floating breakwater. Journal of Coastal Research, 2014, 70, 7-12.	0.3	0
43	An analysis of recent changes in Spanish Coastal Law. Journal of Coastal Research, 2014, 70, 448-453.	0.3	9
44	The effect of scour protections in offshore wind farms. Journal of Coastal Research, 2014, 70, 12-17.	0.3	7
45	Scour prediction and scour protections in offshore wind farms. Renewable Energy, 2013, 57, 358-365.	8.9	80
46	Meteocean Influence on Inland and Coastal Floods in the East of Spain. Journal of Coastal Research, 2013, 291, 72-80.	0.3	4
47	Comparative study of breakwater crown wall – calculation methods. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2013, 166, 25-41.	0.2	10
48	Dimensionless wave height parameter for preliminary design of scour protection in offshore wind farms. Journal of Coastal Research, 2013, 165, 1633-1638.	0.3	11
49	Functional and Environmental Design of Detached, Low Crest Level Breakwaters. Journal of Coastal Research, 2012, 278, 131-142.	0.3	0
50	Why offshore wind energy?. Renewable Energy, 2011, 36, 444-450.	8.9	322