
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241368/publications.pdf Version: 2024-02-01

DETED COOS

#	Article	IF	CITATIONS
1	The fish patty experiment: a strip-plot look. Journal of Quality Technology, 2022, 54, 236-248.	1.8	1
2	Two-level orthogonal screening designs with 80, 96, and 112 runs, and up to 29 factors. Journal of Quality Technology, 2022, 54, 338-358.	1.8	4
3	D- and I-optimal design of multi-factor industrial experiments with ordinal outcomes. Chemometrics and Intelligent Laboratory Systems, 2022, 221, 104463.	1.8	2
4	Robust dynamic experiments for the precise estimation of respiration and fermentation parameters of fruit and vegetables. PLoS Computational Biology, 2022, 18, e1009610.	1.5	1
5	Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Reports, 2022, 39, 110804.	2.9	3
6	I-optimal design of split-plot mixture-process variable experiments: A case study on potato crisps. Food Quality and Preference, 2022, 101, 104620.	2.3	2
7	Drying mode and hydrothermal treatment conditions govern the formation of amyloid-like protein fibrils in solutions of dried hen egg white. Food Hydrocolloids, 2021, 112, 106276.	5.6	15
8	Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Separation and Purification Technology, 2021, 258, 118040.	3.9	23
9	Hydrothermal Treatments Cause Wheat Cluten-Derived Peptides to Form Amyloid-like Fibrils. Journal of Agricultural and Food Chemistry, 2021, 69, 1963-1974.	2.4	16
10	The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. LWT - Food Science and Technology, 2021, 145, 111270.	2.5	10
11	Feed endoxylanase type and dose affect arabinoxylan hydrolysis and fermentation in ageing broilers. Animal Nutrition, 2021, 7, 787-800.	2.1	15
12	Bayesian I-optimal designs for choice experiments with mixtures. Chemometrics and Intelligent Laboratory Systems, 2021, 217, 104395.	1.8	11
13	Effect of postharvest storage on potato (Solanum tuberosum L.) texture after pulsed electric field and thermal treatments. Innovative Food Science and Emerging Technologies, 2021, 74, 102826.	2.7	4
14	A-optimal versus D-optimal design of screening experiments. Journal of Quality Technology, 2021, 53, 369-382.	1.8	27
15	Enumeration and Multicriteria Selection of Orthogonal Minimally Aliased Response Surface Designs. Technometrics, 2020, 62, 21-36.	1.3	14
16	Flexible Mixture-Amount Models Using Multivariate Gaussian Processes. Journal of Business and Economic Statistics, 2020, 38, 257-271.	1.8	4
17	Projections of Definitive Screening Designs by Dropping Columns: Selection and Evaluation. Technometrics, 2020, 62, 37-47.	1.3	6
18	Row-column arrangements of regular and nonregular fractional factorial two-level designs. Journal of Quality Technology, 2020, 52, 304-322.	1.8	3

#	Article	IF	CITATIONS
19	Optimal Blocked and Split-Plot Designs Ensuring Precise Pure-Error Estimation of the Variance Components. Technometrics, 2020, 62, 57-70.	1.3	5
20	Integer programming approaches to find row–column arrangements of two-level orthogonal experimental designs. IISE Transactions, 2020, 52, 780-796.	1.6	1
21	A nonlinear multidimensional knapsack problem in the optimal design of mixture experiments. European Journal of Operational Research, 2020, 281, 201-221.	3.5	12
22	Study into the effect of microfluidisation processing parameters on the physicochemical properties of wheat (Triticum aestivum L.) bran. Food Chemistry, 2020, 305, 125436.	4.2	24
23	Optimal Design of Experiments for Hybrid Nonlinear Models, with Applications to Extended Michaelis–Menten Kinetics. Journal of Agricultural, Biological, and Environmental Statistics, 2020, 25, 601-616.	0.7	6
24	Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Scientific Reports, 2020, 10, 8288.	1.6	42
25	The impact of wheat (Triticum aestivum L.) bran on wheat starch gelatinization: A differential scanning calorimetry study. Carbohydrate Polymers, 2020, 241, 116262.	5.1	16
26	Arabinoxylan-oligosaccharides kick-start arabinoxylan digestion in the aging broiler. Poultry Science, 2020, 99, 2555-2565.	1.5	38
27	A mixed integer optimization approach for model selection in screening experiments. Journal of Quality Technology, 2020, , 1-24.	1.8	4
28	Solid-Phase PCR-Amplified DNAzyme Activity for Real-Time FO-SPR Detection of the MCR-2 Gene. Analytical Chemistry, 2020, 92, 10783-10791.	3.2	24
29	Constructing Two-Level Designs by Concatenation of Strength-3 Orthogonal Arrays. Technometrics, 2019, 61, 219-232.	1.3	9
30	A note on the output of a coordinate-exchange algorithm for optimal experimental design. Chemometrics and Intelligent Laboratory Systems, 2019, 192, 103819.	1.8	1
31	Using mixtureâ€amount modeling to optimize the advertising media mix and quantify crossâ€media synergy for specific target groups. Applied Stochastic Models in Business and Industry, 2019, 35, 1228-1252.	0.9	2
32	A mixture-amount stated preference study on the mobility budget. Transportation Research, Part A: Policy and Practice, 2019, 126, 230-246.	2.0	5
33	A classification criterion for definitive screening designs. Annals of Statistics, 2019, 47, .	1.4	7
34	Steeping and germination of wheat (Triticum aestivum L.). I. Unlocking the impact of phytate and cell wall hydrolysis on bio-accessibility of iron and zinc elements. Journal of Cereal Science, 2019, 90, 102847.	1.8	12
35	Optimal Experimental Design in the Presence of Nested Factors. Technometrics, 2019, 61, 533-544.	1.3	2
36	Inhibition of lipolytic reactions during wet storage of T-Isochrysis lutea biomass by heat treatment. Algal Research, 2019, 38, 101388.	2.4	4

#	Article	IF	CITATIONS
37	Impact of microalgal species on the oxidative stability of n-3 LC-PUFA enriched tomato puree. Algal Research, 2019, 40, 101502.	2.4	20
38	Age-related arabinoxylan hydrolysis and fermentation in the gastrointestinal tract of broilers fed wheat-based diets. Poultry Science, 2019, 98, 4606-4621.	1.5	59
39	Choice models with mixtures: An application to a cocktail experiment. Food Quality and Preference, 2019, 77, 135-146.	2.3	10
40	Orthogonal blocking arrangements for 24-run and 28-run two-level designs. Journal of Quality Technology, 2019, 51, 143-158.	1.8	3
41	Priority-Setting and Personality: Effects of Dispositional Optimism on Preferences for Allocating Healthcare Resources. Social Justice Research, 2019, 32, 186-207.	0.6	3
42	Discussion on "SÃ,ren Bisgaard's contributions to Quality Engineering: Design of experiments― Quality Engineering, 2019, 31, 157-161.	0.7	0
43	Optimizing Oxygen Input Profiles for Efficient Estimation of Michaelis-Menten Respiration Models. Food and Bioprocess Technology, 2019, 12, 769-780.	2.6	6
44	Chapter 12 Adaptation of the microbiome towards fibre digestion: effects of age and dietary ingredients. , 2019, , 199-216.		3
45	Using Firth's method for model estimation and market segmentation based on choice data. Journal of Choice Modelling, 2019, 31, 1-21.	1.2	9
46	An integer linear programing approach to find trend-robust run orders of experimental designs. Journal of Quality Technology, 2019, 51, 37-50.	1.8	8
47	Impact of Nannochloropsis sp. dosage form on the oxidative stability of n-3 LC-PUFA enriched tomato purees. Food Chemistry, 2019, 279, 389-400.	4.2	25
48	Optimal Design of Experiments for Non-Linear Response Surface Models. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 623-640.	0.5	12
49	Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples. Talanta, 2019, 192, 220-225.	2.9	12
50	How consumers' media usage creates synergy in advertising campaigns. International Journal of Market Research, 2018, 60, 268-287.	2.8	13
51	Discussion on "Design augmentation for response optimization and model estimation― Quality Engineering, 2018, 30, 52-56.	0.7	0
52	The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 2018, 264, 367-376.	4.2	49
53	Symmetry breaking in mixed integer linear programming formulations for blocking two-level orthogonal experimental designs. Computers and Operations Research, 2018, 97, 96-110.	2.4	18
54	Quadrature Methods for Bayesian Optimal Design of Experiments With Nonnormal Prior Distributions. Journal of Computational and Graphical Statistics, 2018, 27, 179-194.	0.9	8

#	Article	IF	CITATIONS
55	Assessing the relative importance of health and conformation traits in the cavalier king Charles spaniel. Canine Genetics and Epidemiology, 2018, 5, 1.	2.9	1
56	Ruggedness testing of an analytical method for pesticide residues in potato. Accreditation and Quality Assurance, 2018, 23, 303-316.	0.4	4
57	Consumer responses to different degrees of advertising adaptation: the moderating role of national openness to foreign markets. International Journal of Advertising, 2017, 36, 293-313.	4.2	18
58	Two-Level Orthogonal Screening Designs With 24, 28, 32, and 36 Runs. Journal of the American Statistical Association, 2017, 112, 1354-1369.	1.8	20
59	Glare based apple sorting and iterative algorithm for bruise region detection using shortwave infrared hyperspectral imaging. Postharvest Biology and Technology, 2017, 130, 103-115.	2.9	50
60	Analyzing ordinal data from a split-plot design in the presence of a random block effect. Quality Engineering, 2017, 29, 553-562.	0.7	4
61	Optimal design of experiments for excipient compatibility studies. Chemometrics and Intelligent Laboratory Systems, 2017, 171, 125-139.	1.8	10
62	A comparison of soil tests for available phosphorus in longâ€ŧerm field experiments in Europe. European Journal of Soil Science, 2017, 68, 873-885.	1.8	71
63	An algorithmic framework for generating optimal two-stratum experimental designs. Computational Statistics and Data Analysis, 2017, 115, 224-249.	0.7	1
64	The predictive power of batter rheological properties on cakeÂqualityÂ-ÂThe effect of pregelatinized flour, leavening acid type and mixing time. Journal of Cereal Science, 2017, 77, 219-227.	1.8	13
65	Bayesian D-Optimal Choice Designs for Mixtures. Journal of the Royal Statistical Society Series C: Applied Statistics, 2017, 66, 363-386.	0.5	9
66	Optimal Experimental Design for Efficient Optical Manipulation of Magnetic Beads Seeded in a Microwell Array. Journal of Quality Technology, 2017, 49, 402-417.	1.8	4
67	Testing for Lack of Fit in Blocked, Split-Plot, and Other Multi-Stratum Designs. Journal of Quality Technology, 2017, 49, 320-336.	1.8	3
68	Sensory quality of wine: quality assessment by merging ranks of an expert-consumer panel. Australian Journal of Grape and Wine Research, 2017, 23, 318-328.	1.0	5
69	Optimal design of large-scale screening experiments: a critical look at the coordinate-exchange algorithm. Statistics and Computing, 2016, 26, 15-28.	0.8	17
70	Augmented design and analysis of computer experiments: a novel tolerance embedded global optimization approach applied to SWIR hyperspectral illumination design. Optics Express, 2016, 24, 29380.	1.7	3
71	Longâ€ŧerm effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. GCB Bioenergy, 2016, 8, 371-381.	2.5	71
72	An integrated algorithm for the optimal design of stated choice experiments with partial profiles. Transportation Research Part B: Methodological, 2016, 93, 648-669.	2.8	10

#	Article	IF	CITATIONS
73	Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip. Analytical Chemistry, 2016, 88, 8596-8603.	3.2	23
74	How to Mix Brand Placements in Television Programmes to Maximise Effectiveness. International Journal of Market Research, 2016, 58, 649-670.	2.8	3
75	I-Optimal Design of Mixture Experiments. Journal of the American Statistical Association, 2016, 111, 899-911.	1.8	80
76	The origin–destination airport choice for all-cargo aircraft operations in Europe. Transportation Research, Part E: Logistics and Transportation Review, 2016, 87, 53-74.	3.7	30
77	Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing. Sensors and Actuators B: Chemical, 2016, 229, 678-685.	4.0	31
78	Discussion of "21st century screening experiments: What, why, and how― Quality Engineering, 2016, 28, 111-114.	0.7	6
79	Discrete choice modelling of natal dispersal: †Choosing' where to breed from a finite set of available areas. Methods in Ecology and Evolution, 2015, 6, 997-1006.	2.2	10
80	l-Optimal Design of Mixture Experiments in the Presence of Ingredient Availability Constraints. Journal of Quality Technology, 2015, 47, 220-234.	1.8	18
81	Staggered-Level Designs for Response Surface Modeling. Journal of Quality Technology, 2015, 47, 156-175.	1.8	12
82	Optimal Design of Blocked Experiments in the Presence of Supplementary Information About the Blocks. Journal of Quality Technology, 2015, 47, 301-317.	1.8	4
83	An improved twoâ€stage variance balance approach for constructing partial profile designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2015, 31, 626-648.	0.9	25
84	Mixed-Media Modeling May Help Optimize Campaign Recognition and Brand Interest. Journal of Advertising Research, 2015, 55, 443-457.	1.0	10
85	Relative importance and interactions of furan precursors in sterilised, vegetable-based food systems. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 33, 1-14.	1.1	1
86	Home care service planning. The case of Landelijke Thuiszorg. European Journal of Operational Research, 2015, 243, 292-301.	3.5	97
87	Location of logistics companies: a stated preference study to disentangle the impact of accessibility. Journal of Transport Geography, 2015, 42, 110-121.	2.3	75
88	Public Preferences for Prioritizing Preventive and Curative Health Care Interventions: A Discrete Choice Experiment. Value in Health, 2015, 18, 224-233.	0.1	51
89	Blocking Orthogonal Designs With Mixed Integer Linear Programming. Technometrics, 2015, 57, 428-439.	1.3	13
90	Constructing General Orthogonal Fractional Factorial Split-Plot Designs. Technometrics, 2015, 57, 488-502.	1.3	22

#	Article	IF	CITATIONS
91	A fast metaheuristic for the travelling salesperson problem with hotel selection. 4or, 2015, 13, 15-34.	1.0	15
92	Editorial – European Network for Business and Industrial Statistics 2012. Quality and Reliability Engineering International, 2014, 30, 313-314.	1.4	0
93	V-optimal mixture designs for the qth degree model. Chemometrics and Intelligent Laboratory Systems, 2014, 136, 173-178.	1.8	11
94	An iterated local search algorithm for the vehicle routing problem with backhauls. European Journal of Operational Research, 2014, 237, 454-464.	3.5	61
95	Optimal Design of Blocked and Split-Plot Experiments for Fixed Effects and Variance Component Estimation. Technometrics, 2014, 56, 132-144.	1.3	23
96	Three-level equivalent-estimation split-plot designs based on subset and supplementary difference set designs. IIE Transactions, 2013, 45, 1153-1165.	2.1	2
97	A memetic algorithm for the travelling salesperson problem with hotel selection. Computers and Operations Research, 2013, 40, 1716-1728.	2.4	34
98	The accessibility arc upgrading problem. European Journal of Operational Research, 2013, 224, 458-465.	3.5	27
99	A General Construction Method for Five-Level Second-Order Rotatable Designs. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 1961-1969.	0.6	3
100	Group size, h-index, and efficiency in publishing in top journals explain expert panel assessments of research group quality and productivity. Research Evaluation, 2013, 22, 224-236.	1.3	19
101	Three-Stage Industrial Strip-Plot Experiments. Journal of Quality Technology, 2013, 45, 1-17.	1.8	7
102	Optimal Blocking for General Resolution-3 Designs. Journal of Quality Technology, 2013, 45, 166-187.	1.8	7
103	I-Optimal Versus D-Optimal Split-Plot Response Surface Designs. Journal of Quality Technology, 2012, 44, 85-101.	1.8	80
104	A comparison of different Bayesian design criteria for setting up stated preference studies. Transportation Research Part B: Methodological, 2012, 46, 789-807.	2.8	15
105	A General Strategy for Analyzing Data From Split-Plot and Multistratum Experimental Designs. Technometrics, 2012, 54, 340-354.	1.3	14
106	Staggered-Level Designs for Experiments With More Than One Hard-to-Change Factor. Technometrics, 2012, 54, 355-366.	1.3	14
107	An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split-Plot Designs. Journal of Quality Technology, 2012, 44, 363-374.	1.8	15
108	Robust preprocessing and model selection for spectral data. Journal of Chemometrics, 2012, 26, 282-289.	0.7	33

#	Article	IF	CITATIONS
109	Classification of three-level strength-3 arrays. Journal of Statistical Planning and Inference, 2012, 142, 794-809.	0.4	6
110	Model-based electron microscopy: From images toward precise numbers for unknown structure parameters. Micron, 2012, 43, 509-515.	1.1	20
111	Precision of three-dimensional atomic scale measurements from HRTEM images: What are the limits?. Ultramicroscopy, 2012, 114, 20-30.	0.8	12
112	A metaheuristic for a teaching assistant assignment-routing problem. Computers and Operations Research, 2012, 39, 249-258.	2.4	14
113	Bayesian optimal designs for discrete choice experiments with partial profiles. Journal of Choice Modelling, 2011, 4, 52-74.	1.2	90
114	Optimal design of factorial paired comparison experiments in the presence of within-pair order effects. Food Quality and Preference, 2011, 22, 198-204.	2.3	11
115	Prespecified factor level combinations in the optimal design of mixture-process variable experiments. Food Quality and Preference, 2011, 22, 661-670.	2.3	17
116	Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity. International Journal of Research in Marketing, 2011, 28, 378-388.	2.4	48
117	A Split-Plot Experiment with Factor-Dependent Whole-Plot Sizes. Journal of Quality Technology, 2011, 43, 66-79.	1.8	8
118	Bayesian Conjoint Choice Designs for Measuring Willingness to Pay. Environmental and Resource Economics, 2011, 48, 129-149.	1.5	41
119	Efficient GRASP+VND and GRASP+VNS metaheuristics for the traveling repairman problem. 4or, 2011, 9, 189-209.	1.0	82
120	A weighted predictionâ€based selection criterion for response surface designs. Quality and Reliability Engineering International, 2011, 27, 719-729.	1.4	6
121	Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2011, 27, 197-203.	0.9	14
122	The usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2011, 27, 173-188.	0.9	59
123	Rank-order choice-based conjoint experiments: Efficiency and design. Journal of Statistical Planning and Inference, 2011, 141, 2519-2531.	0.4	11
124	Throughput maximization of particle radius measurements through balancing size versus current of the electron probe. Ultramicroscopy, 2011, 111, 940-947.	0.8	12
125	D-Optimal and D-Efficient Equivalent-Estimation Second-Order Split-Plot Designs. Journal of Quality Technology, 2010, 42, 358-372.	1.8	22
126	-optimal conjoint choice designs with no-choice options for a nested logit model. Journal of Statistical Planning and Inference, 2010, 140, 851-861.	0.4	19

#	Article	IF	CITATIONS
127	Optimal two-level conjoint designs with constant attributes in the profile sets. Journal of Statistical Planning and Inference, 2010, 140, 3035-3046.	0.4	6
128	An efficient metaheuristic to improve accessibility by rural road network planning. Electronic Notes in Discrete Mathematics, 2010, 36, 631-638.	0.4	2
129	Update formulas for split-plot and block designs. Computational Statistics and Data Analysis, 2010, 54, 3381-3391.	0.7	10
130	Obtaining more information from conjoint experiments by best–worst choices. Computational Statistics and Data Analysis, 2010, 54, 1426-1433.	0.7	22
131	Design and analysis of industrial stripâ€plot experiments. Quality and Reliability Engineering International, 2010, 26, 127-136.	1.4	21
132	Historical land use change has lowered terrestrial silica mobilization. Nature Communications, 2010, 1, 129.	5.8	189
133	Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments. Transportation Research Part B: Methodological, 2010, 44, 1268-1289.	2.8	30
134	D-optimal design of split-split-plot experiments. Biometrika, 2009, 96, 67-82.	1.3	38
135	Analysis of Data from Non-Orthogonal Multistratum Designs in Industrial Experiments. Journal of the Royal Statistical Society Series C: Applied Statistics, 2009, 58, 467-484.	0.5	28
136	Discussion of "Response surface design evaluation and comparison― Journal of Statistical Planning and Inference, 2009, 139, 657-659.	0.4	9
137	A variable-neighbourhood search algorithm for finding optimal run orders in the presence of serial correlation. Journal of Statistical Planning and Inference, 2009, 139, 30-44.	0.4	14
138	An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs. Journal of Business and Economic Statistics, 2009, 27, 279-291.	1.8	75
139	Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity. Marketing Science, 2009, 28, 122-135.	2.7	70
140	Recommendations on the use of Bayesian optimal designs for choice experiments. Quality and Reliability Engineering International, 2008, 24, 737-744.	1.4	39
141	Optimal designs for conjoint experiments. Computational Statistics and Data Analysis, 2008, 52, 2369-2387.	0.7	17
142	Models and optimal designs for conjoint choice experiments including a no-choice option. International Journal of Research in Marketing, 2008, 25, 94-103.	2.4	70
143	Model-Robust Design of Conjoint Choice Experiments. Communications in Statistics Part B: Simulation and Computation, 2008, 37, 1603-1621.	0.6	14
144	A candidate-set-free algorithm for generating D-optimal split-plot designs. Journal of the Royal Statistical Society Series C: Applied Statistics, 2007, 56, 347-364.	0.5	65

#	Article	IF	CITATIONS
145	Tailor-Made Split-Plot Designs for Mixture and Process Variables. Journal of Quality Technology, 2007, 39, 326-339.	1.8	33
146	Sequential imputation for missing values. Computational Biology and Chemistry, 2007, 31, 320-327.	1.1	41
147	Practical Inference from Industrial Split-Plot Designs. Journal of Quality Technology, 2006, 38, 162-179.	1.8	49
148	An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs. SSRN Electronic Journal, 2006, , .	0.4	9
149	The Importance of Attribute Interactions in Conjoint Choice Design and Modeling. SSRN Electronic Journal, 2006, , .	0.4	2
150	The D-Optimal Design of Blocked Experiments with Mixture Components. Journal of Quality Technology, 2006, 38, 319-332.	1.8	26
151	A Comparison of Criteria to Design Efficient Choice Experiments. Journal of Marketing Research, 2006, 43, 409-419.	3.0	172
152	Optimal versus orthogonal and equivalent-estimation design of blocked and split-plot experiments. Statistica Neerlandica, 2006, 60, 361-378.	0.9	31
153	Blocking response surface designs. Computational Statistics and Data Analysis, 2006, 51, 1075-1088.	0.7	33
154	\$\$mathcal{D}\$\$ -optimal Minimum Support Mixture Designs in Blocks. Metrika, 2006, 65, 53-68.	0.5	9
155	Model-robust and model-sensitive designs. Computational Statistics and Data Analysis, 2005, 49, 201-216.	0.7	17
156	Identifying effects under a split-plot design structure. Journal of Chemometrics, 2005, 19, 5-15.	0.7	14
157	Estimating the Intercept in an Orthogonally Blocked Experiment when the Block Effects are Random. Communications in Statistics - Theory and Methods, 2005, 33, 873-890.	0.6	3
158	The Optimal Design of Blocked Experiments in Industry. , 2005, , 247-279.		1
159	Outperforming Completely Randomized Designs. Journal of Quality Technology, 2004, 36, 12-26.	1.8	68
160	Teaching Optimal Design of Experiments Using a Spreadsheet. Journal of Statistics Education, 2004, 12, .	1.4	5
161	D-Optimal Split-Plot Designs With Given Numbers and Sizes of Whole Plots. Technometrics, 2003, 45, 235-245.	1.3	91
162	Efficient Bayesian designs under heteroscedasticity. Journal of Statistical Planning and Inference, 2002, 104, 469-483.	0.4	7

#	Article	IF	CITATIONS
163	Optimal Split-Plot Designs. Lecture Notes in Statistics, 2002, , 201-216.	0.1	10
164	An Algorithm for the Construction of Experi-mental Designs with Fixed and Random Blocks. , 2002, , 153-158.		0
165	Optimal designs for variance function estimation using sample variances. Journal of Statistical Planning and Inference, 2001, 92, 233-252.	0.4	3
166	Optimal Split-Plot Designs. Journal of Quality Technology, 2001, 33, 436-450.	1.8	89
167	-optimal response surface designs in the presence of random block effects. Computational Statistics and Data Analysis, 2001, 37, 433-453.	0.7	44
168	How to relax inconsistent constraints in a mixture experiment. Chemometrics and Intelligent Laboratory Systems, 2001, 55, 147-149.	1.8	2
169	Bayesian D-Optimal Choice Designs for Mixtures. SSRN Electronic Journal, 0, , .	0.4	1
170	Rank-Order Conjoint Experiments: Efficiency and Design. SSRN Electronic Journal, 0, , .	0.4	2
171	A Comparison of Different Bayesian Design Criteria to Compute Efficient Conjoint Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	3
172	Design Criteria to Develop Choice Experiments to Measure the WTP Accurately. SSRN Electronic Journal, 0, , .	0.4	3
173	Individually Adapted Sequential Bayesian Designs for Conjoint Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	5
174	Recommendations on the use of Bayesian Optimal Designs for Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	6
175	Optimal Two-Level Conjoint Designs for Large Numbers of Attributes. SSRN Electronic Journal, 0, , .	0.4	1
176	Models and Optimal Designs for Conjoint Choice Experiments Including a No-Choice Option. SSRN Electronic Journal, 0, , .	0.4	1
177	Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity. SSRN Electronic Journal, 0, , .	0.4	5
178	Comparing Different Sampling Schemes for Approximating the Integrals Involved in the Semi-Bayesian Optimal Design of Choice Experiments. SSRN Electronic Journal, 0, , .	0.4	0
179	Flexible Mixture-Amount Models for Business and Industry Using Gaussian Processes. SSRN Electronic Journal, 0, , .	0.4	0