
Moshe Shemesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241351/publications.pdf Version: 2024-02-01

MOSHE SHEMESH

#	Article	IF	CITATIONS
1	DNAzyme-based biosensor for sub ppb lead ions detection using porous silicon Fabry-Pérot interferometer. Sensors and Actuators B: Chemical, 2022, 362, 131761.	4.0	4
2	The Bacillary Postbiotics, Including 2-Undecanone, Suppress the Virulence of Pathogenic Microorganisms. Pharmaceutics, 2022, 14, 962.	2.0	7
3	Spatiotemporal bio-shielding of bacteria through consolidated geometrical structuring. Npj Biofilms and Microbiomes, 2022, 8, 37.	2.9	3
4	Biofilm formation onto starch fibres by <i>Bacillus subtilis</i> governs its successful adaptation to chickpea milk. Microbial Biotechnology, 2021, 14, 1839-1846.	2.0	6
5	Antimicrobial Effect of Zn2+ Ions Governs the Microbial Quality of Donor Human Milk. Foods, 2021, 10, 637.	1.9	10
6	Role of Probiotic Bacilli in Developing Synbiotic Food: Challenges and Opportunities. Frontiers in Microbiology, 2021, 12, 638830.	1.5	18
7	Chickpea-Derived Prebiotic Substances Trigger Biofilm Formation by Bacillus subtilis. Nutrients, 2021, 13, 4228.	1.7	3
8	The Adaptive Morphology of Bacillus subtilis Biofilms: A Defense Mechanism against Bacterial Starvation. Microorganisms, 2020, 8, 62.	1.6	20
9	Efficiency of <i>Bacillus subtilis</i> metabolism of sugar alcohols governs its probiotic effect against cariogenic <i>Streptococcus mutans</i> . Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1222-1230.	1.9	10
10	Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. Foods, 2020, 9, 1094.	1.9	14
11	Producing pasture-like milk from goats in confinement. Livestock Science, 2020, 236, 104056.	0.6	8
12	Role of <i>Bacillus</i> species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. Journal of the Science of Food and Agriculture, 2020, 100, 2327-2336.	1.7	27
13	Proteolytic Activity of Bacillus subtilis upon κ-Casein Undermines Its "Caries-Safe―Effect. Microorganisms, 2020, 8, 221.	1.6	8
14	Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces. Frontiers in Microbiology, 2019, 10, 1405.	1.5	34
15	Probiotic Bifunctionality of Bacillus subtilis—Rescuing Lactic Acid Bacteria from Desiccation and Antagonizing Pathogenic Staphylococcus aureus. Microorganisms, 2019, 7, 407.	1.6	36
16	Antimicrobial Properties of Magnesium Open Opportunities to Develop Healthier Food. Nutrients, 2019, 11, 2363.	1.7	25
17	Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food. ACS Applied Bio Materials, 2019, 2, 4932-4940.	2.3	13
18	Robust Biofilm-Forming Bacillus Isolates from the Dairy Environment Demonstrate an Enhanced Resistance to Cleaning-in-Place Procedures. Foods, 2019, 8, 134.	1.9	14

Moshe Shemesh

#	Article	IF	CITATIONS
19	Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability. Food Microbiology, 2019, 82, 316-324.	2.1	32
20	Eliminating the Need for Biocidal Agents in Anti-Biofouling Polymers by Applying Grafted Nanosilica Instead. ACS Omega, 2018, 3, 12437-12445.	1.6	12
21	Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming <i>Bacillus subtilis</i> . Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 974-982.	1.9	38
22	Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Scientific Reports, 2018, 8, 9350.	1.6	23
23	Enrichment of milk with magnesium provides healthier and safer dairy products. Npj Biofilms and Microbiomes, 2017, 3, 24.	2.9	19
24	Bacillus subtilis Biofilm Development – A Computerized Study of Morphology and Kinetics. Frontiers in Microbiology, 2017, 8, 2072.	1.5	32
25	Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis. PLoS ONE, 2017, 12, e0179761.	1.1	12
26	Development of a Method to Determine the Effectiveness of Cleaning Agents in Removal of Biofilm Derived Spores in Milking System. Frontiers in Microbiology, 2016, 7, 1498.	1.5	26
27	High resolution melt analysis to confirm the establishment of <i>Lactobacillus plantarum</i> and <i>Enterococcus faecium</i> from silage inoculants during ensiling of wheat. Grassland Science, 2016, 62, 29-36.	0.6	7
28	Draft Genome Sequence of Bacillus licheniformis S127, Isolated from a Sheep Udder Clinical Infection. Genome Announcements, 2015, 3, .	0.8	7
29	Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression. Frontiers in Microbiology, 2015, 6, 907.	1.5	43
30	A contact active bactericidal stainless steel via a sustainable process utilizing electrodeposition and covalent attachment in water. Green Chemistry, 2015, 17, 2344-2347.	4.6	8
31	Bioinspired passive anti-biofouling surfaces preventing biofilm formation. Journal of Materials Chemistry B, 2015, 3, 1371-1378.	2.9	49
32	Lactose triggers biofilm formation by Streptococcus mutans. International Dairy Journal, 2015, 42, 51-57.	1.5	42
33	The LuxS Based Quorum Sensing Governs Lactose Induced Biofilm Formation by Bacillus subtilis. Frontiers in Microbiology, 2015, 6, 1517.	1.5	60
34	External pH Is a Cue for the Behavioral Switch That Determines Surface Motility and Biofilm Formation of Alicyclobacillus acidoterrestris. Journal of Food Protection, 2014, 77, 1418-1423.	0.8	19
35	Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. International Journal of Food Microbiology, 2014, 181, 19-27.	2.1	43
36	Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces. Colloids and Surfaces B: Biointerfaces, 2013, 112, 356-361.	2.5	45

Moshe Shemesh

#	Article	IF	CITATIONS
37	Draft Genome Sequence of Alicyclobacillus acidoterrestris Strain ATCC 49025. Genome Announcements, 2013, 1, .	0.8	8
38	A Combination of Glycerol and Manganese Promotes Biofilm Formation in Bacillus subtilis via Histidine Kinase KinD Signaling. Journal of Bacteriology, 2013, 195, 2747-2754.	1.0	157
39	Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces. BMC Microbiology, 2010, 10, 51.	1.3	42
40	<i>In Vitro</i> Real-Time Interactions of Cranberry Constituents with Immobilized Fructosyltransferase. Journal of Medicinal Food, 2010, 13, 1153-1160.	0.8	3
41	The Biocide Chlorine Dioxide Stimulates Biofilm Formation in <i>Bacillus subtilis</i> by Activation of the Histidine Kinase KinC. Journal of Bacteriology, 2010, 192, 6352-6356.	1.0	83
42	DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness. BMC Microbiology, 2008, 8, 236.	1.3	22
43	Genetic and Physiological Effects of Noncoherent Visible Light Combined with Hydrogen Peroxide on <i>Streptococcus mutans</i> in Biofilm. Antimicrobial Agents and Chemotherapy, 2008, 52, 2626-2631.	1.4	42
44	Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. Journal of Medical Microbiology, 2007, 56, 1528-1535.	0.7	84
45	Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology (United Kingdom), 2007, 153, 1307-1317.	0.7	125
46	Effect of oxazaborolidines on immobilized fructosyltransferase analyzed by surface plasmon resonance. Biosensors and Bioelectronics, 2007, 22, 1658-1663.	5.3	8
47	Surface plasmon resonance for real-time evaluation of immobilized fructosyltransferase activity. Journal of Microbiological Methods, 2006, 64, 411-415.	0.7	9
48	In vitro binding interactions of oral bacteria with immobilized fructosyltransferase. Journal of Applied Microbiology, 2006, 100, 871-877.	1.4	9
49	Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydrate Research, 2006, 341, 2090-2097.	1.1	64
50	Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. Journal of Antimicrobial Chemotherapy, 2006, 57, 865-871.	1.3	44
51	The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nature Genetics, 2001, 29, 83-87.	9.4	476
52	Physical and transcriptional map of the hereditary inclusion body myopathy locus on chromosome 9p12-p13. European Journal of Human Genetics, 2001, 9, 501-509.	1.4	21
53	Dnazyme-Based Biosensor for Sub Ppb Lead Ions Detection Using Porous Silicon Fabry-Pérot Interferometer. SSRN Electronic Journal, 0, , .	0.4	0