
Michaela MÃ¹/₄ller-Trutwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reprogramming dysfunctional CD8+ T cells to promote properties associated with natural HIV control. Journal of Clinical Investigation, 2022, 132, .	8.2	15
2	CXCR3 Expression Pattern on CD4+ T Cells and IP-10 Levels with Regard to the HIV-1 Reservoir in the Gut-Associated Lymphatic Tissue. Pathogens, 2022, 11, 483.	2.8	4
3	NK cell spatial dynamics and IgA responses in gut-associated lymphoid tissues during SIV infections. Communications Biology, 2022, 5, .	4.4	1
4	SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nature Communications, 2021, 12, 1282.	12.8	24
5	Analysis and annotation of DNA methylation in two nonhuman primate species using the Infinium Human Methylation 450K and EPIC BeadChips. Epigenomics, 2021, 13, 169-186.	2.1	9
6	Role of NKG2a/c+CD8+ TÂcells in pathogenic versus non-pathogenic SIV infections. IScience, 2021, 24, 102314.	4.1	8
7	IL-21 and IFNα therapy rescues terminallyÂdifferentiated NK cells and limits SIV reservoir in ART-treated macaques. Nature Communications, 2021, 12, 2866.	12.8	23
8	CD32+CD4+ T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Frontiers in Immunology, 2021, 12, 695148.	4.8	8
9	Ultrasensitive Detection of p24 in Plasma Samples from People with Primary and Chronic HIV-1 Infection. Journal of Virology, 2021, 95, e0001621.	3.4	9
10	Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines, 2021, 9, 958.	4.4	10
11	NK-B cell cross talk induces CXCR5 expression on natural killer cells. IScience, 2021, 24, 103109.	4.1	9
12	Extremely low viral reservoir in treated chronically HIV-1-infected individuals. EBioMedicine, 2020, 57, 102830.	6.1	18
13	Optimal Maturation of the SIV-Specific CD8+ T Cell Response after Primary Infection Is Associated with Natural Control of SIV: ANRS SIC Study. Cell Reports, 2020, 32, 108174.	6.4	12
14	Non-human Primate Determinants of Natural Killer Cells in Tissues at Steady-State and During Simian Immunodeficiency Virus Infection. Frontiers in Immunology, 2020, 11, 2134.	4.8	11
15	DNA methylation changes in metabolic and immune-regulatory pathways in blood and lymph node CD4 + T cells in response to SIV infections. Clinical Epigenetics, 2020, 12, 188.	4.1	8
16	TLR7 dosage polymorphism shapes interferogenesis and HIV-1 acute viremia in women. JCI Insight, 2020, 5, .	5.0	36
17	Metabolic plasticity of HIV-specific CD8+ T cells is associated with enhanced antiviral potential and natural control of HIV-1 infection. Nature Metabolism, 2019, 1, 704-716.	11.9	72
18	The Yellow Brick Road towards HIV Eradication. Trends in Immunology, 2019, 40, 465-467.	6.8	4

#	Article	IF	CITATIONS
19	NK cell immune responses differ after prime and boost vaccination. Journal of Leukocyte Biology, 2019, 105, 1055-1073.	3.3	20
20	Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4+ T Cells and Offers an Opportunity to Tackle Infection. Cell Metabolism, 2019, 29, 611-626.e5.	16.2	124
21	MDSCs in infectious diseases: regulation, roles, and readjustment. Cancer Immunology, Immunotherapy, 2019, 68, 673-685.	4.2	44
22	Interferon-associated therapies toward HIV control: The back and forth. Cytokine and Growth Factor Reviews, 2018, 40, 99-112.	7.2	17
23	Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity. Nature Communications, 2018, 9, 1371.	12.8	20
24	Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Frontiers in Immunology, 2018, 9, 780.	4.8	29
25	Systemic <scp>DPP</scp> 4 activity is reduced during primary <scp>HIV</scp> â€1 infection and is associated with intestinal <scp>RORC</scp> ⁺ <scp>CD</scp> 4 ⁺ cell levels: a surrogate marker candidate of <scp>HIV</scp> â€induced intestinal damage. Journal of the International AIDS Society. 2018. 21. e25144.	3.0	16
26	Ultrasensitive HIV-1 p24 Assay Detects Single Infected Cells and Differences in Reservoir Induction by Latency Reversal Agents. Journal of Virology, 2017, 91, .	3.4	64
27	CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections. Journal of Virology, 2017, 91, .	3.4	24
28	Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nature Genetics, 2017, 49, 1705-1713.	21.4	107
29	Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nature Medicine, 2017, 23, 1277-1286.	30.7	107
30	NKG2C ⁺ memoryâ€like NK cells contribute to the control of HIV viremia during primary infection: Optiprimâ€ANRS 147. Clinical and Translational Immunology, 2017, 6, e150.	3.8	42
31	High proportion of PDâ€lâ€expressing CD4 ⁺ T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. European Journal of Immunology, 2017, 47, 2113-2123.	2.9	44
32	A Mature NK Profile at the Time of HIV Primary Infection Is Associated with an Early Response to cART. Frontiers in Immunology, 2017, 8, 54.	4.8	30
33	Impact of early cART on HIV blood and semen compartments at the time of primary infection. PLoS ONE, 2017, 12, e0180191.	2.5	25
34	Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathogens, 2016, 12, e1005774.	4.7	50
35	Immune activation in HIV infection. Current Opinion in HIV and AIDS, 2016, 11, 201-208.	3.8	19
36	Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Current Opinion in Virology, 2016, 19, 37-44.	5.4	17

#	Article	IF	CITATIONS
37	Non-human primates in HIV research: Achievements, limits and alternatives. Infection, Genetics and Evolution, 2016, 46, 324-332.	2.3	39
38	Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells. Cell Reports, 2016, 14, 355-369.	6.4	31
39	Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles. PLoS ONE, 2016, 11, e0160251.	2.5	18
40	Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathogens, 2015, 11, e1005153.	4.7	191
41	Second European Round Table on the Future Management of HIV. Journal of Virus Eradication, 2015, 1, 211-220.	0.5	3
42	Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 6918-6927.	3.4	11
43	Modulation of Type I Interferon-Associated Viral Sensing during Acute Simian Immunodeficiency Virus Infection in African Green Monkeys. Journal of Virology, 2015, 89, 751-762.	3.4	10
44	The genome of the vervet (<i>Chlorocebus aethiops sabaeus</i>). Genome Research, 2015, 25, 1921-1933.	5.5	114
45	NK cell exhaustion: bad news for chronic disease?. Oncotarget, 2015, 6, 21797-21798.	1.8	17
46	Second European Round Table on the Future Management of HIV: 10-11 October 2014, Barcelona, Spain. Journal of Virus Eradication, 2015, 1, 211-20.	0.5	0
47	Innate Immune Responses and Rapid Control of Inflammation in African Green Monkeys Treated or Not with Interferon-Alpha during Primary SIVagm Infection. PLoS Pathogens, 2014, 10, e1004241.	4.7	54
48	MHC polymorphism in Caribbean African green monkeys. Immunogenetics, 2014, 66, 353-360.	2.4	4
49	<scp>HIV</scp> â€associated chronic immune activation. Immunological Reviews, 2013, 254, 78-101.	6.0	349
50	Systems biology of natural simian immunodeficiency virus infections. Current Opinion in HIV and AIDS, 2012, 7, 71-78.	3.8	25
51	Innate immunity in the control of HIV/AIDS. Aids, 2012, 26, 1269-1279.	2.2	19
52	Level of double negative T cells, which produce TGF-β and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. Aids, 2012, 26, 139-148.	2.2	52
53	Expression sequence tag library derived from peripheral blood mononuclear cells of the chlorocebus sabaeus. BMC Genomics, 2012, 13, 279.	2.8	4
54	Pivotal role of M-DC8+ monocytes from viremic HIV-infected patients in TNFα overproduction in response to microbial products. Blood, 2012, 120, 2259-2268.	1.4	84

#	Article	IF	CITATIONS
55	The Biased Nucleotide Composition of HIV-1 Triggers Type I Interferon Response and Correlates with Subtype D Increased Pathogenicity. PLoS ONE, 2012, 7, e33502.	2.5	29
56	Acute Plasma Biomarkers of T Cell Activation Set-Point Levels and of Disease Progression in HIV-1 Infection. PLoS ONE, 2012, 7, e46143.	2.5	149
57	Greater diversity of HIV DNA variants in the rectum compared to variants in the blood in patients without HAART. Journal of Medical Virology, 2011, 83, 1499-1507.	5.0	23
58	Downregulation of Robust Acute Type I Interferon Responses Distinguishes Nonpathogenic Simian Immunodeficiency Virus (SIV) Infection of Natural Hosts from Pathogenic SIV Infection of Rhesus Macaques. Journal of Virology, 2010, 84, 7886-7891.	3.4	191
59	AIDS Progression Is Associated with the Emergence of IL-17–Producing Cells Early After Simian Immunodeficiency Virus Infection. Journal of Immunology, 2010, 184, 984-992.	0.8	53
60	Gag p27-Specific B- and T-Cell Responses in Simian Immunodeficiency Virus SIVagm-Infected African Green Monkeys. Journal of Virology, 2009, 83, 2770-2777.	3.4	22
61	Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nature Medicine, 2009, 15, 861-865.	30.7	204
62	African Non Human Primates Infected by SIV - Why Dont they Get Sick? Lessons from Studies on the Early Phase of Non-Pathogenic SIV Infection. Current HIV Research, 2009, 7, 39-50.	0.5	49
63	Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. Journal of Clinical Investigation, 2009, 119, 3544-55.	8.2	406
64	Effect of SIVmac infection on plasmacytoid and CD1c ⁺ myeloid dendritic cells in cynomolgus macaques. Immunology, 2008, 124, 223-233.	4.4	41
65	Plasmacytoid Dendritic Cell Dynamics and Alpha Interferon Production during Simian Immunodeficiency Virus Infection with a Nonpathogenic Outcome. Journal of Virology, 2008, 82, 5145-5152.	3.4	105
66	Early Divergence in Lymphoid Tissue Apoptosis between Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infections of Nonhuman Primates. Journal of Virology, 2008, 82, 1175-1184.	3.4	78
67	Nef-Mediated Enhancement of Virion Infectivity and Stimulation of Viral Replication Are Fundamental Properties of Primate Lentiviruses. Journal of Virology, 2007, 81, 13852-13864.	3.4	102
68	Long oligonucleotide microarrays for African green monkey gene expression profile analysis. FASEB Journal, 2007, 21, 3262-3271.	0.5	14
69	T regulatory cells: aid or hindrance in the clearance of disease?. Journal of Cellular and Molecular Medicine, 2007, 11, 1291-1325.	3.6	14
70	Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1. Cell, 2006, 125, 1055-1067.	28.9	359
71	Phenotype and function of myeloid dendritic cells derived from African green monkey blood monocytes. Journal of Immunological Methods, 2006, 308, 138-155.	1.4	22
72	Simian Immunodeficiency Virus SIVagm.sab Infection of Caribbean African Green Monkeys: a New Model for the Study of SIV Pathogenesis in Natural Hosts. Journal of Virology, 2006, 80, 4858-4867.	3.4	139

Michaela Müller-Trutwin

#	Article	IF	CITATIONS
73	Role for plasmacytoid dendritic cells in antiâ€HIV innate immunity. Immunology and Cell Biology, 2005, 83, 578-585.	2.3	42
74	Simian Immunodeficiency Virus Infection in Wild-Caught Chimpanzees from Cameroon. Journal of Virology, 2005, 79, 1312-1319.	3.4	45
75	Impact of Viral Factors on Very Early In Vivo Replication Profiles in Simian Immunodeficiency Virus SIVagm-Infected African Green Monkeys. Journal of Virology, 2005, 79, 6249-6259.	3.4	79
76	DC-SIGN from African Green Monkeys Is Expressed in Lymph Nodes and Mediates Infection in trans of Simian Immunodeficiency Virus SIVagm. Journal of Virology, 2004, 78, 798-810.	3.4	24
77	Nef Proteins from Simian Immunodeficiency Virus-Infected Chimpanzees Interact with p21-Activated Kinase 2 and Modulate Cell Surface Expression of Various Human Receptors. Journal of Virology, 2004, 78, 6864-6874.	3.4	46
78	Phylogenetic characteristics of three new HIV-1 N strains and implications for the origin of group N. Aids, 2004, 18, 1371-1381.	2.2	54
79	Viral load in tissues during the early and chronic phase of non-pathogenic SIVagm infection. Journal of Medical Primatology, 2004, 33, 83-97.	0.6	54
80	High levels of SIVmnd-1 replication in chronically infected Mandrillus sphinx. Virology, 2003, 317, 119-127.	2.4	71
81	Broad Spectrum of Coreceptor Usage and Rapid Disease Progression in HIV-1–Infected Individuals from Central African Republic. AIDS Research and Human Retroviruses, 2003, 19, 551-560.	1.1	20
82	SIVagm genetic and biological features associated with replication. Frontiers in Bioscience - Landmark, 2003, 8, d1170-1185.	3.0	38
83	High Levels of Viral Replication Contrast with Only Transient Changes in CD4+ and CD8+ Cell Numbers during the Early Phase of Experimental Infection with Simian Immunodeficiency Virus SIVmnd-1 in Mandrillus sphinx. Journal of Virology, 2002, 76, 10256-10263.	3.4	73
84	Wild Mandrillus sphinx Are Carriers of Two Types of Lentivirus. Journal of Virology, 2001, 75, 7086-7096.	3.4	133
85	Frequent Substitution Polymorphisms in African Green Monkey CCR5 Cluster at Critical Sites for Infections by Simian Immunodeficiency Virus SIVagm, Implying Ancient Virus-Host Coevolution. Journal of Virology, 2001, 75, 8449-8460.	3.4	38
86	Synthetic Peptide Strategy for the Detection of and Discrimination among Highly Divergent Primate Lentiviruses. AIDS Research and Human Retroviruses, 2001, 17, 937-952.	1.1	113
87	High Levels of Viral Replication during Primary Simian Immunodeficiency Virus SIVagm Infection Are Rapidly and Strongly Controlled in African Green Monkeys. Journal of Virology, 2000, 74, 7538-7547.	3.4	154
88	HIV-1 group N among HIV-1-seropositive individuals in Cameroon. Aids, 2000, 14, 2623-2625.	2.2	72
89	Mutations in CCR5-Coding Sequences Are Not Associated with SIV Carrier Status in African Nonhuman Primates. AIDS Research and Human Retroviruses, 1999, 15, 931-939.	1.1	14
90	Towards improvements in molecular tools for diagnosis and management of HIV infections. Lancet, The, 1999, 354, 1660-1662.	13.7	10

#	Article	IF	CITATIONS
91	Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nature Medicine, 1998, 4, 1032-1037.	30.7	496
92	PCR amplification of large genomic fragments from human and simian immunodeficiency virus infected cell lines. Life Sciences, 1992, 50, 1973-1984.	4.3	1