Giulia Righetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new computational procedure for refrigerant condensation inside herringbone-type Brazed Plate Heat Exchangers. International Journal of Heat and Mass Transfer, 2015, 82, 530-536.	4.8	74
2	Experimental study of phase change material (PCM) embedded in 3D periodic structures realized via additive manufacturing. International Journal of Thermal Sciences, 2020, 153, 106376.	4.9	56
3	Saturated vapour condensation of R134a inside a 4†mm ID horizontal smooth tube: Comparison with the low GWP substitutes R152a, R1234yf and R1234ze(E). International Journal of Heat and Mass Transfer, 2019, 133, 461-473.	4.8	52
4	Assessment of the low-GWP refrigerants R600a, R1234ze(Z) and R1233zd(E) for heat pump and organic Rankine cycle applications. Applied Thermal Engineering, 2020, 167, 114804.	6.0	50
5	Condensation of the low GWP refrigerant HFO1234ze(E) inside a Brazed Plate Heat Exchanger. International Journal of Refrigeration, 2014, 38, 250-259.	3.4	46
6	Experimental assessment of the low GWP refrigerant HFO-1234ze(Z) for high temperature heat pumps. Experimental Thermal and Fluid Science, 2014, 57, 293-300.	2.7	44
7	R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis. International Journal of Refrigeration, 2019, 108, 336-346.	3.4	40
8	A new model for refrigerant boiling inside Brazed Plate Heat Exchangers (BPHEs). International Journal of Heat and Mass Transfer, 2015, 91, 144-149.	4.8	38
9	Active and passive cooling technologies for thermal management of avionics in helicopters: Loop heat pipes and mini-Vapor Cycle System. Thermal Science and Engineering Progress, 2018, 5, 107-116.	2.7	35
10	Phase change materials embedded in porous matrices for hybrid thermal energy storages: Experimental results and modeling. International Journal of Refrigeration, 2019, 106, 266-277.	3.4	35
11	Comparative performance analysis of the low GWP refrigerants HFO1234yf, HFO1234ze(E) and HC600a inside a roll-bond evaporator. International Journal of Refrigeration, 2015, 54, 1-9.	3.4	33
12	Hydrocarbon refrigerants HC290 (Propane) and HC1270 (Propylene) low GWP long-term substitutes for HFC404A: A comparative analysis in vaporisation inside a small-diameter horizontal smooth tube. Applied Thermal Engineering, 2017, 124, 707-715.	6.0	27
13	Saturated vapour condensation of R410A inside a 4†mm ID horizontal smooth tube: Comparison with the low GWP substitute R32. International Journal of Heat and Mass Transfer, 2018, 125, 702-709.	4.8	25
14	On the design of Phase Change Materials based thermal management systems for electronics cooling. Applied Thermal Engineering, 2021, 196, 117276.	6.0	25
15	Saturated vapour condensation of HFC404A inside a 4 mm ID horizontal smooth tube: Comparison with the long-term low GWP substitutes HC290 (Propane) and HC1270 (Propylene). International Journal of Heat and Mass Transfer, 2017, 108, 2088-2099.	4.8	24
16	Machine learning approach for predicting refrigerant two-phase pressure drop inside Brazed Plate Heat Exchangers (BPHE). International Journal of Heat and Mass Transfer, 2020, 163, 120450.	4.8	24
17	Mini Vapor Cycle System for high density electronic cooling applications. International Journal of Refrigeration, 2013, 36, 1191-1202.	3.4	23
18	Experimental and theoretical analysis of a heat pipe heat exchanger operating with a low global warming potential refrigerant. Applied Thermal Engineering, 2014, 65, 361-368.	6.0	22

GIULIA RIGHETTI

#	Article	IF	CITATIONS
19	Application of an Artificial Neural Network (ANN) for predicting low-GWP refrigerant condensation heat transfer inside herringbone-type Brazed Plate Heat Exchangers (BPHE). International Journal of Heat and Mass Transfer, 2020, 156, 119824.	4.8	21
20	Condensation of the low GWP refrigerant HFC152a inside a Brazed Plate Heat Exchanger. Experimental Thermal and Fluid Science, 2015, 68, 509-515.	2.7	19
21	Boiling of the new low-GWP refrigerants R1234ze(Z) and R1233zd(E) inside a small commercial brazed plate heat exchanger. International Journal of Refrigeration, 2019, 104, 376-385.	3.4	19
22	Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants. International Journal of Heat and Mass Transfer, 2019, 139, 31-38.	4.8	19
23	Application of an Artificial Neural Network (ANN) for predicting low-GWP refrigerant boiling heat transfer inside Brazed Plate Heat Exchangers (BPHE). International Journal of Heat and Mass Transfer, 2020, 160, 120204.	4.8	19
24	HFC32 and HFC410A flow boiling inside a 4 mm horizontal smooth tube. International Journal of Refrigeration, 2016, 61, 12-22.	3.4	18
25	R1233zd(E) flow boiling inside a 4.3†mm ID microfin tube. International Journal of Refrigeration, 2018, 91, 69-79.	3.4	18
26	Hybrid PCM—aluminium foams' thermal storages: an experimental study. International Journal of Low-Carbon Technologies, 2018, 13, 286-291.	2.6	18
27	Saturated flow boiling of HFC134a and its low GWP substitute HFO1234ze(E) inside a 4 mm horizontal smooth tube. International Journal of Refrigeration, 2016, 64, 32-39.	3.4	15
28	Application of Hybrid PCM Thermal Energy Storages with and without Al Foams in Solar Heating/Cooling and Ground Source Absorption Heat Pump Plant: An Energy and Economic Analysis. Applied Sciences (Switzerland), 2019, 9, 1007.	2.5	15
29	HFO1234ze(E) vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Comparison with HFC134a and HFO1234yf. International Journal of Refrigeration, 2016, 67, 125-133.	3.4	14
30	Comparative analysis of microfin vs smooth tubes in R32 and R410A condensation. International Journal of Refrigeration, 2021, 128, 218-231.	3.4	14
31	Water pool boiling in metal foams: From experimental results to a generalized model based on artificial neural network. International Journal of Heat and Mass Transfer, 2021, 176, 121451.	4.8	14
32	Water pool boiling across low pore density aluminum foams. Heat Transfer Engineering, 2020, 41, 1673-1682.	1.9	13
33	HFC32 vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Experimental measurements and IR thermography analysis. International Journal of Refrigeration, 2015, 57, 77-86.	3.4	12
34	HFC404A condensation inside a small brazed plate heat exchanger: Comparison with the low GWP substitutes propane and propylene. International Journal of Refrigeration, 2017, 81, 41-49.	3.4	12
35	Flow boiling of environmentally friendly refrigerants inside a compact enhanced tube. International Journal of Refrigeration, 2019, 104, 344-355.	3.4	12
36	HFC32, a low GWP substitute for HFC410A in medium size chillers and heat pumps. International Journal of Refrigeration, 2015, 53, 62-68.	3.4	11

GIULIA RIGHETTI

#	Article	IF	CITATIONS
37	Saturated R134a flow boiling inside a 4.3Âmm inner diameter microfin tube. Science and Technology for the Built Environment, 2017, 23, 933-945.	1.7	11
38	A review on in-tube two-phase heat transfer of hydro-fluoro-olefines refrigerants. Science and Technology for the Built Environment, 2016, 22, 1191-1225.	1.7	10
39	Flow dynamic and energetic assessment of a commercial micro-pump for a portable/wearable artificial kidney: Peristaltic vs. diaphragm pumps. Thermal Science and Engineering Progress, 2017, 3, 31-36.	2.7	9
40	Experimental investigation of phase change of medium/high temperature paraffin wax embedded in 3D periodic structure. International Journal of Thermofluids, 2020, 5-6, 100035.	7.8	9
41	HFC404A vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Comparison with the possible long-term low GWP substitutes HC290 (Propane) and HC1270 (Propylene). Applied Thermal Engineering, 2016, 108, 1401-1408.	6.0	8
42	Development of an Innovative Raw Milk Dispenser Based on Nanofluid Technology. International Journal of Food Engineering, 2016, 12, 165-172.	1.5	8
43	Flow boiling heat transfer on a Carbon/Carbon surface. International Journal of Heat and Mass Transfer, 2017, 109, 938-948.	4.8	8
44	Heat Pipe Finned Heat Exchanger for Heat Recovery: Experimental Results and Modeling. Heat Transfer Engineering, 2018, 39, 1011-1023.	1.9	8
45	Comparative analysis of microfin vs smooth tubes in R32 and R410A boiling. International Journal of Refrigeration, 2021, 131, 515-525.	3.4	8
46	Assessment and optimisation of low-GWP refrigerants during two-phase heat transfer inside small-diameter smooth tubes. International Journal of Refrigeration, 2020, 117, 61-70.	3.4	8
47	Local heat transfer coefficients of R32 and R410A boiling inside a brazed plate heat exchanger (BPHE). Applied Thermal Engineering, 2022, 215, 118930.	6.0	8
48	Flow boiling heat transfer capabilities of R134a low GWP substitutes inside a 4Âmm id horizontal smooth tube: R600a and R152a. Heat and Mass Transfer, 0, , 1.	2.1	7
49	On the hysteresis phenomenon during flow boiling heat transfer on a hydrophilic carbon/carbon surface. International Communications in Heat and Mass Transfer, 2020, 117, 104795.	5.6	6
50	Local heat transfer coefficients of R32 and R410a condensation inside a brazed plate heat exchanger (BPHE). International Journal of Heat and Mass Transfer, 2022, 194, 123041.	4.8	6
51	R245fa Flow Boiling inside a 4.2 mm ID Microfin Tube. Journal of Physics: Conference Series, 2017, 923, 012016.	0.4	5
52	Analysis of the freezing time of chicken breast finite cylinders. International Journal of Refrigeration, 2018, 95, 38-50.	3.4	3
53	Shape optimization of lattice-frame materials obtained via additive manufacturing during air forced convection. Experimental Heat Transfer, 0, , 1-16.	3.2	3
54	Nanoparticle Deposition During Cu-Water Nanofluid Pool Boiling. Journal of Physics: Conference Series, 2017, 923, 012004.	0.4	2

#	Article	IF	CITATIONS
55	Theoretical analysis of free convection in a partially foam-filled enclosure. Heat and Mass Transfer, 2019, 55, 1937-1946.	2.1	2
56	Effect of Refrigerant Properties Estimation on the Prediction Capabilities of Well-Established Two-Phase Heat Transfer and Pressure Drop Models for New Refrigerants. Journal of Physics: Conference Series, 2020, 1599, 012054.	0.4	0