Anne Kathrin Voss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241033/publications.pdf

Version: 2024-02-01

90 papers 6,196 citations

43 h-index 74018 75 g-index

93 all docs 93 docs citations

93 times ranked 8435 citing authors

#	Article	IF	CITATIONS
1	The histone lysine acetyltransferase HBO1 (KAT7) regulates hematopoietic stem cell quiescence and self-renewal. Blood, 2022, 139, 845-858.	0.6	25
2	Loss of TAF8 causes TFIID dysfunction and p53-mediated apoptotic neuronal cell death. Cell Death and Differentiation, 2022, 29, 1013-1027.	5.0	6
3	Some mice lacking intrinsic, as well as death receptor induced apoptosis and necroptosis, can survive to adulthood. Cell Death and Disease, 2022, 13, 317.	2.7	5
4	The histone acetyltransferase HBO1 promotes efficient tip cell sprouting during angiogenesis. Development (Cambridge), 2021, 148, .	1.2	4
5	The essentials of developmental apoptosis. F1000Research, 2020, 9, 148.	0.8	84
6	Downregulation of the GHRH/GH/IGF-1 axis in a mouse model of BÃ \P rjeson-Forssman-Lehman Syndrome. Development (Cambridge), 2020, 147, .	1.2	4
7	MOZ directs the distal-less homeobox gene expression program during craniofacial development. Development (Cambridge), 2019, 146, .	1.2	17
8	Are transplantable stem cells required for adult hematopoiesis?. Experimental Hematology, 2019, 75, 1-10.	0.2	12
9	Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Reports, 2019, 27, 442-454.e5.	2.9	37
10	Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Research, 2019, 47, 5016-5037.	6.5	23
11	PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood, 2019, 133, 1729-1741.	0.6	40
12	Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Human Molecular Genetics, 2018, 27, 2171-2186.	1.4	22
13	Subtle Changes in the Levels of BCL-2 Proteins Cause Severe Craniofacial Abnormalities. Cell Reports, 2018, 24, 3285-3295.e4.	2.9	35
14	Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development. Genes and Development, 2018, 32, 1420-1429.	2.7	29
15	Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK. Cell, 2018, 173, 1217-1230.e17.	13.5	155
16	Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature, 2018, 560, 253-257.	13.7	182
17	Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. BioEssays, 2018, 40, e1800078.	1.2	88
18	Cortical Layer Inversion and Deregulation of Reelin Signaling in the Absence of SOCS6 and SOCS7. Cerebral Cortex, 2017, 27, bhv253.	1.6	13

#	Article	lF	CITATIONS
19	Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. Journal of Leukocyte Biology, 2017, 101, 887-892.	1.5	25
20	MOZ and BMI1 act synergistically to maintain hematopoietic stem cells. Experimental Hematology, 2017, 47, 83-97.e8.	0.2	15
21	MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood, 2016, 128, 2307-2318.	0.6	74
22	Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Reports, 2016, 16, 3311-3321.	2.9	25
23	MOF maintains transcriptional programs regulating cellular stress response. Oncogene, 2016, 35, 2698-2710.	2.6	51
24	MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood, 2015, 125, 1910-1921.	0.6	47
25	Response to Heard etÂal. EMBO Journal, 2015, 34, 2396-2397.	3.5	5
26	MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene, 2015, 34, 5807-5820.	2.6	61
27	MOZ and BMI1 play opposing roles during <i>Hox</i> gene activation in ES cells and in body segment identity specification in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5437-5442.	3.3	28
28	The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 2015, 6, 6535.	5.8	67
29	Mesodermal expression of Moz is necessary for cardiac septum development. Developmental Biology, 2015, 403, 22-29.	0.9	21
30	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	2.8	232
31	A new mouse model of Canavan leukodystrophy displays hearing impairment due to central nervous system dysmyelination. DMM Disease Models and Mechanisms, 2014, 7, 649-57.	1.2	12
32	Excessive versus Physiologically Relevant Levels of Retinoic Acid in Embryonic Stem Cell Differentiation. Stem Cells, 2014, 32, 1451-1458.	1.4	16
33	Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9585-9590.	3.3	52
34	Pro-apoptotic BIM is an essential initiator of physiological endothelial cell death independent of regulation by FOXO3. Cell Death and Differentiation, 2014, 21, 1687-1695.	5.0	19
35	Loss of <i>caspase-2</i> augments lymphomagenesis and enhances genomic instability in <i>Atm</i> -deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19920-19925.	3.3	65
36	Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death and Disease, 2013, 4, e650-e650.	2.7	62

#	Article	IF	CITATIONS
37	IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO Journal, 2012, 31, 1679-1691.	3.5	180
38	Querkopf is a key marker of self-renewal and multipotency of adult neural stem cells. Journal of Cell Science, 2012, 125, 295-309.	1.2	38
39	Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene. Journal of Biological Chemistry, 2012, 287, 20652-20663.	1.6	58
40	Migration of sympathetic preganglionic neurons in the spinal cord of a C3Gâ€deficient mouse suggests that C3G acts in the reelin signaling pathway. Journal of Comparative Neurology, 2012, 520, 3194-3202.	0.9	8
41	MOZ Regulates the Tbx1 Locus, and Moz Mutation Partially Phenocopies DiGeorge Syndrome. Developmental Cell, 2012, 23, 652-663.	3.1	84
42	BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death and Differentiation, 2012, 19, 915-925.	5.0	99
43	Chromatin Immunoprecipitation of Mouse Embryos. Methods in Molecular Biology, 2012, 809, 335-352.	0.4	13
44	ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes and Development, 2011, 25, 251-262.	2.7	99
45	Whole-Exome-Sequencing Identifies Mutations in Histone Acetyltransferase Gene KAT6B in Individuals with the Say-Barber-Biesecker Variant of Ohdo Syndrome. American Journal of Human Genetics, 2011, 89, 675-681.	2.6	156
46	Respiratory distress and perinatal lethality in Nedd4-2-deficient mice. Nature Communications, 2011, 2, 287.	5.8	85
47	HBO1 Is Required for H3K14 Acetylation and Normal Transcriptional Activity during Embryonic Development. Molecular and Cellular Biology, 2011, 31, 845-860.	1.1	138
48	Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome–like phenotype and hyperactivated MAPK signaling in humans and mice. Journal of Clinical Investigation, 2011, 121, 3479-3491.	3.9	89
49	Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome. PLoS ONE, 2010, 5, e11561.	1.1	44
50	NHS-A isoform of the NHS gene is a novel interactor of ZO-1. Experimental Cell Research, 2009, 315, 2358-2372.	1.2	22
51	MYST family histone acetyltransferases take center stage in stem cells and development. BioEssays, 2009, 31, 1050-1061.	1.2	96
52	Moz and Retinoic Acid Coordinately Regulate H3K9 Acetylation, Hox Gene Expression, and Segment Identity. Developmental Cell, 2009, 17, 674-686.	3.1	144
53	The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nature Immunology, 2008, 9, 810-819.	7.0	232
54	Mof (MYST1 or KAT8) Is Essential for Progression of Embryonic Development Past the Blastocyst Stage and Required for Normal Chromatin Architecture. Molecular and Cellular Biology, 2008, 28, 5093-5105.	1.1	148

#	Article	IF	Citations
55	C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment. Development (Cambridge), 2008, 135, 2139-2149.	1.2	78
56	Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis. Journal of Cell Science, 2007, 120, 2044-2052.	1.2	59
57	The Diverse Biological Roles of MYST Histone Acetyltransferase Family Proteins. Cell Cycle, 2007, 6, 696-704.	1.3	72
58	The genes coding for the MYST family histone acetyltransferases, Tip60 and Mof, are expressed at high levels during sperm development. Gene Expression Patterns, 2007, 7, 657-665.	0.3	40
59	Protein and gene expression analysis of Phf6, the gene mutated in the Börjeson–Forssman–Lehmann Syndrome of intellectual disability and obesity. Gene Expression Patterns, 2007, 7, 858-871.	0.3	45
60	Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene. Developmental Biology, 2006, 293, 90-103.	0.9	50
61	C3G regulates the size of the cerebral cortex neural precursor population. EMBO Journal, 2006, 25, 3652-3663.	3.5	43
62	Absence of Suppressor of Cytokine Signalling 3 Reduces Self-Renewal and Promotes Differentiation in Murine Embryonic Stem Cells. Stem Cells, 2006, 24, 604-614.	1.4	51
63	The Transcriptional Coactivator Querkopf Controls Adult Neurogenesis. Journal of Neuroscience, 2006, 26, 11359-11370.	1.7	117
64	Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes and Development, 2006, 20, 1175-1186.	2.7	148
65	Breaking an Absolute Species Barrier: Transgenic Mice Expressing the Mink PrP Gene Are Susceptible to Transmissible Mink Encephalopathy. Journal of Virology, 2005, 79, 14971-14975.	1.5	19
66	Querkopf, a histone acetyltransferase, is essential for embryonic neurogenesis. Frontiers in Bioscience - Landmark, 2004, 9, 24.	3.0	17
67	The Transcription Factors c-rel and RelA Control Epidermal Development and Homeostasis in Embryonic and Adult Skin via Distinct Mechanisms. Molecular and Cellular Biology, 2004, 24, 5733-5745.	1.1	75
68	Development of hydrocephalus in mice lacking SOCS7. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15446-15451.	3.3	57
69	Interaction of the PAS B Domain with HSP90 Accelerates Hypoxia-Inducible Factor-1α Stabilization. Cellular Physiology and Biochemistry, 2004, 14, 351-360.	1.1	121
70	Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nature Medicine, 2003, 9, 1513-1519.	15.2	165
71	Mutations in a Novel Gene, NHS, Cause the Pleiotropic Effects of Nance-Horan Syndrome, Including Severe Congenital Cataract, Dental Anomalies, and Mental Retardation. American Journal of Human Genetics, 2003, 73, 1120-1130.	2.6	107
72	The guanine nucleotide exchange factor C3G is necessary for the formation of focal adhesions and vascular maturation. Development (Cambridge), 2003, 130, 355-367.	1.2	64

#	Article	IF	Citations
73	Gcm1 expression defines three stages of chorio-allantoic interaction during placental development. Mechanisms of Development, 2002, 115, 27-34.	1.7	46
74	Purification of a pluripotent neural stem cell from the adult mouse brain. Nature, 2001, 412, 736-739.	13.7	629
75	Identification of Novel Genes by Gene Trap Mutagenesis. , 2001, 175, 377-396.		2
76	A new gene trap construct enriching for insertion events near the 5' end of genes. Transgenic Research, 2000, 9, 395-404.	1.3	7
77	The Murine Gene, Traube, Is Essential for the Growth of Preimplantation Embryos. Developmental Biology, 2000, 227, 324-342.	0.9	54
78	Expression of PTTG and prc1 genes during telencephalic neurogenesis. Mechanisms of Development, 2000, 92, 301-304.	1.7	15
79	Efficiency assessment of the gene trap approach. , 1998, 212, 171-180.		67
80	Distribution of a murine protein tyrosine phosphatase BL- \hat{l}^2 -galactosidase fusion protein suggests a role in neurite outgrowth. , 1998, 212, 250-257.		18
81	Compensation for a gene trap mutation in the murine microtubule-associated protein 4 locus by alternative polyadenylation and alternative splicing., 1998, 212, 258-266.		43
82	Germ Line Chimeras from Female ES Cells. Experimental Cell Research, 1997, 230, 45-49.	1.2	60
83	Initiation in Vitro of Growth of Bovine Primordial Follicles1. Biology of Reproduction, 1996, 55, 942-948.	1.2	284
84	Senescence of aortic endothelial cells in culture: Effects of basic fibroblast growth factor expression on cell phenotype, migration, and proliferation. Journal of Cellular Physiology, 1993, 157, 279-288.	2.0	58
85	Oxytocin gene expression and action in bovine preovulatory follicles. Regulatory Peptides, 1993, 45, 257-261.	1.9	9
86	Estradiol- $17\hat{l}^2$ has a Biphasic Effect on Oxytocin Secretion by Bovine Granulosa Cells1. Biology of Reproduction, 1993, 48, 1404-1409.	1.2	35
87	Oxytocin stimulates progesterone production by bovine granulosa cells isolated before, but not after, the luteinizing hormone surge. Molecular and Cellular Endocrinology, 1991, 78, 17-24.	1.6	26
88	Cell-specific, developmentally and hormonally regulated expression of the rabbit uteroglobin transgene and the endogenous mouse uteroglobin gene in transgenic mice. Mechanisms of Development, 1991, 34, 57-67.	1.7	29
89	Oxytocin Secretion by Bovine Granulosa Cells: Effects of Stage of Follicular Development, Gonadotropins, and Coculture with Theca Interna. Endocrinology, 1991, 128, 1991-1999.	1.4	42
90	A comparison of mouse and rabbit embryos for the production of transgenic animals by pronuclear microinjection. Theriogenology, 1990, 34, 813-824.	0.9	7