
David H Wagner Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4240967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the CD40-CD40 ligand interaction in CD4+ T cell contact-dependent activation of monocyte interleukin-1 synthesis. European Journal of Immunology, 1994, 24, 3148-3154.	2.9	164
2	The Pathology of Bleomycin-Induced Fibrosis Is Associated with Loss of Resident Lung Mesenchymal Stem Cells That Regulate Effector T-cell Proliferation. Stem Cells, 2011, 29, 725-735.	3.2	116
3	Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proceedings of the United States of America, 2002, 99, 3782-3787.	7.1	101
4	Cutting Edge: CD40-Induced Expression of Recombination Activating Gene (RAG) 1 and RAG2: A Mechanism for the Generation of Autoaggressive T Cells in the Periphery. Journal of Immunology, 2003, 170, 3455-3459.	0.8	58
5	Peripheral CD4loCD40+ auto-aggressive T cell expansion during insulin-dependent diabetes mellitus. European Journal of Immunology, 2004, 34, 1488-1497.	2.9	56
6	A unique T cell subset described as CD4loCD40+ T cells (TCD40) in human type 1 diabetes. Clinical Immunology, 2007, 124, 138-148.	3.2	55
7	Galectin-9 Controls CD40 Signaling through a Tim-3 Independent Mechanism and Redirects the Cytokine Profile of Pathogenic T Cells in Autoimmunity. PLoS ONE, 2012, 7, e38708.	2.5	51
8	CD40 on NOD CD4 T cells contributes to their activation and pathogenicity. Journal of Autoimmunity, 2008, 31, 385-392.	6.5	47
9	Disruption of the homeostatic balance between autoaggressive (CD4+ CD40+) and regulatory (CD4+) Tj ETQq1	1	14 rgBT /Ove
10	Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. Journal of Neuroimmunology, 2014, 274, 132-140.	2.3	38
11	A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia, 2014, 57, 2366-2373.	6.3	35
12	High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity. PLoS ONE, 2008, 3, e2076.	2.5	32
13	Re-shaping the T cell repertoire: TCR editing and TCR revision for good and for bad. Clinical Immunology, 2007, 123, 1-6.	3.2	30
14	An analytical workflow for investigating cytokine profiles. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 289-298.	1.5	28
15	<scp>CD</scp> 40â€mediated signalling influences trafficking, <scp>T</scp> â€cell receptor expression, and Tâ€cell pathogenesis, in the <scp>NOD</scp> model of type 1 diabetes. Immunology, 2017, 152, 243-254.	4.4	25
16	Defining a new biomarker for the autoimmune component of Multiple Sclerosis: Th40 cells. Journal of Neuroimmunology, 2014, 270, 75-85.	2.3	24
17	CD40 glycoforms and TNF-receptors 1 and 2 in the formation of CD40 receptor(s) in autoimmunity. Molecular Immunology, 2010, 47, 2303-2313.	2.2	22
18	The Expanding Role of TNF-Receptor Super Family Member CD40 (tnfrsf5) in Autoimmune Disease: Focus on Th40 Cells. Current Immunology Reviews, 2010, 6, 130-136.	1.2	20

DAVID H WAGNER JR

#	Article	IF	CITATIONS
19	CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression. Cellular and Molecular Immunology, 2013, 10, 483-489.	10.5	19
20	Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS ONE, 2017, 12, e0172037.	2.5	19
21	Overlooked Mechanisms in Type 1 Diabetes Etiology: How Unique Costimulatory Molecules Contribute to Diabetogenesis. Frontiers in Endocrinology, 2017, 8, 208.	3.5	16
22	CD40 engagement of CD4 ⁺ CD40 ⁺ T cells in a neoâ€self antigen disease model ablates CTLAâ€4 expression and indirectly impacts tolerance. European Journal of Immunology, 2012, 42, 424-435.	2.9	14
23	An Alternative Role for Foxp3 As an Effector T Cell Regulator Controlled through CD40. Journal of Immunology, 2013, 191, 717-725.	0.8	9
24	A CD40 targeting peptide prevents severe symptoms in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2019, 332, 8-15.	2.3	9
25	Biomarker Discovery in Pre–Type 1 Diabetes; Th40 Cells as a Predictive Risk Factor. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4127-4142.	3.6	8
26	CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]. Diabetologia, 2019, 62, 1730-1731.	6.3	3
27	The specific antigen approach in multiple sclerosis: Can it ever be enough?. Clinical Immunology, 2012, 144, 139-141.	3.2	2
28	The Role of T Cells in Type 1 Diabetes. , 0, , .		1
29	CD5, CD28 and CD40 as interconnected coâ€stimulatory/immuneâ€modulators of T cells responses in the NOD, NOR and BALB mouse strains. FASEB Journal, 2008, 22, 663.15.	0.5	Ο
30	TCR Revision As A Mechanism Of Peripheral Tolerance. FASEB Journal, 2008, 22, 669.22.	0.5	0
31	Are we aiming to miss in translational autoimmunity treatments?. F1000Research, 2018, 7, 1754.	1.6	0
32	Are we aiming to miss in translational autoimmunity treatments?. F1000Research, 2018, 7, 1754.	1.6	0