
Mariet M Hefting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4240473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regional and global concerns over wetlands and water quality. Trends in Ecology and Evolution, 2006, 21, 96-103.	8.7	637
2	Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 2013, 4, 1070-1075.	5.2	359
3	Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nature Geoscience, 2013, 6, 103-107.	12.9	260
4	Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry, 2004, 67, 113-134.	3.5	253
5	Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation. Ecosystems, 2003, 6, 0020-0030.	3.4	214
6	Nitrous Oxide Emission and Denitrification in Chronically Nitrate‣oaded Riparian Buffer Zones. Journal of Environmental Quality, 2003, 32, 1194-1203.	2.0	214
7	Global trends and uncertainties in terrestrial denitrification and N ₂ O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130112.	4.0	205
8	The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering, 2005, 24, 465-482.	3.6	186
9	Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences, 2013, 10, 1-22.	3.3	177
10	Water table fluctuations in the riparian zone: comparative results from a pan-European experiment. Journal of Hydrology, 2002, 265, 129-148.	5.4	148
11	Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biology, 2007, 52, 252-266.	2.4	126
12	Interactions between Thaumarchaea, <i>Nitrospira</i> and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME Journal, 2014, 8, 2397-2410.	9.8	121
13	Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biological Conservation, 2017, 212, 390-397.	4.1	114
14	Decreased N ₂ O reduction by low soil pH causes high N ₂ O emissions in a riparian ecosystem. Geobiology, 2011, 9, 294-300.	2.4	113
15	Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. Forest Ecology and Management, 2016, 377, 1-15.	3.2	101
16	Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient. Ecological Modelling, 2003, 163, 51-71.	2.5	96
17	Denitrification at pH 4 by a soilâ€derived <i>Rhodanobacter</i> â€dominated community. Environmental Microbiology, 2010, 12, 3264-3271.	3.8	95
18	Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. Ambio, 2012, 41, 231-245.	5.5	92

MARIET M HEFTING

#	Article	IF	CITATIONS
19	Microbial minorities modulate methane consumption through niche partitioning. ISME Journal, 2013, 7, 2214-2228.	9.8	91
20	Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones. Water Research, 2019, 162, 139-150.	11.3	78
21	N2O emission hotspots at different spatial scales and governing factors for small scale hotspots. Science of the Total Environment, 2009, 407, 2325-2332.	8.0	72
22	Spatial Variation in Denitrification and N2O Emission in Relation to Nitrate Removal Efficiency in a N-stressed Riparian Buffer Zone. Ecosystems, 2006, 9, 550-563.	3.4	67
23	Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands. Environmental Pollution, 2006, 139, 143-156.	7.5	66
24	Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement: Opportunities and limitations. Ecological Engineering, 2013, 56, 5-13.	3.6	66
25	Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. Environmental Pollution, 1998, 102, 521-526.	7.5	56
26	Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 2015, 508, 402-410.	8.0	55
27	Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat. Soil Biology and Biochemistry, 2015, 81, 38-47.	8.8	55
28	Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biology and Biochemistry, 2013, 57, 822-829.	8.8	51
29	Short period of oxygenation releases latch on peat decomposition. Science of the Total Environment, 2014, 481, 61-68.	8.0	48
30	Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process. Scientific Reports, 2015, 5, 17306.	3.3	47
31	Heavy Metal (Copper, Lead, and Zinc) Accumulation and Excretion by the Earthworm, Dendrobaena veneta. Journal of Environmental Quality, 1997, 26, 278-284.	2.0	40
32	Peat origin and land use effects on microbial activity, respiration dynamics and exo-enzyme activities in drained peat soils in the Netherlands. Soil Biology and Biochemistry, 2016, 95, 144-155.	8.8	39
33	Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating. Frontiers in Microbiology, 2012, 3, 352.	3.5	36
34	Combining tree species and decay stages to increase invertebrate diversity in dead wood. Forest Ecology and Management, 2019, 441, 80-88.	3.2	33
35	Snow cover manipulation effects on microbial community structure and soil chemistry in a mountain bog. Plant and Soil, 2013, 369, 151-164.	3.7	31
36	Faunal community consequence of interspecific bark trait dissimilarity in earlyâ€stage decomposing logs. Functional Ecology, 2016, 30, 1957-1966.	3.6	31

MARIET M HEFTING

#	Article	IF	CITATIONS
37	Rewetting Drained Peat Meadows: Risks and Benefits in Terms of Nutrient Release and Greenhouse Gas Exchange. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	29
38	Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil. FEMS Microbiology Ecology, 2015, 91, .	2.7	29
39	Microbial transformations of C and N in a boreal forest floor as affected by temperature. Plant and Soil, 1999, 208, 187-197.	3.7	28
40	The (w)hole story: Facilitation of dead wood fauna by bark beetles?. Soil Biology and Biochemistry, 2016, 95, 70-77.	8.8	28
41	The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The Netherlands. Science of the Total Environment, 2018, 636, 177-191.	8.0	28
42	Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland. FEMS Microbiology Ecology, 2013, 86, 59-70.	2.7	26
43	The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: The roles of peat type and land use. Journal of Environmental Management, 2014, 143, 44-53.	7.8	26
44	Is there a tree economics spectrum of decomposability?. Soil Biology and Biochemistry, 2018, 119, 135-142.	8.8	25
45	Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biology and Biochemistry, 2017, 107, 114-124.	8.8	24
46	Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. Royal Society Open Science, 2017, 4, 170449.	2.4	23
47	Dead wood diversity promotes fungal diversity. Oikos, 2021, 130, 2202-2216.	2.7	20
48	Alternative transient states and slow plant community responses after changed flooding regimes. Global Change Biology, 2019, 25, 1358-1367.	9.5	19
49	Repression of potential nitrification activities by matgrass sward species. Plant and Soil, 2010, 337, 435-445.	3.7	14
50	Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods in Ecology and Evolution, 2020, 11, 828-838.	5.2	14
51	Nitrification along a grassland gradient: Inhibition found in matgrass swards. Soil Biology and Biochemistry, 2010, 42, 635-641.	8.8	13
52	Fauna Community Convergence During Decomposition of Deadwood Across Tree Species and Forests. Ecosystems, 2021, 24, 926-938.	3.4	12
53	Nutrient limitation in speciesâ€rich Calthion grasslands in relation to opportunities for restoration in a peat meadow landscape. Applied Vegetation Science, 2010, 13, 315-325.	1.9	10
54	SRU _D : A simple nonâ€destructive method for accurate quantification of plant diversity dynamics. Journal of Ecology, 2019, 107, 2155-2166.	4.0	9

MARIET M HEFTING

#	Article	IF	CITATIONS
55	Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. Frontiers in Plant Science, 2022, 13, 769551.	3.6	9
56	Differential Effects of Oxidised and Reduced Nitrogen on Vegetation and Soil Chemistry of Species-Rich Acidic Grasslands. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	8
57	Nutrient release characteristics from droppings of grassâ€foraging waterfowl (<scp><i>Anser) Tj ETQq1 1 0.7843</i></scp>	14 rgBT /(2.4	Oyerlock 10
58	Fast and furious: Early differences in growth rate drive shortâ€ŧerm plant dominance and exclusion under eutrophication. Ecology and Evolution, 2020, 10, 10116-10129.	1.9	5
59	Numerical Relationships Between Archaeal and Bacterial amoA Genes Vary by Icelandic Andosol Classes. Microbial Ecology, 2018, 75, 204-215.	2.8	4
60	Stem traits, compartments and tree species affect fungal communities on decaying wood. Environmental Microbiology, 2022, 24, 3625-3639.	3.8	4
61	The Role of Floodplains in Mitigating Diffuse Nitrate Pollution. , 0, , 253-268.		2
62	Considering inner and outer bark as distinctive tissues helps to disentangle the effects of bark traits on decomposition. Journal of Ecology, 2022, 110, 2359-2373.	4.0	1