List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4240267/publications.pdf Version: 2024-02-01

DONG KEUN HAN

#	Article	IF	CITATIONS
1	Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials, 1998, 19, 851-859.	5.7	412
2	Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68, 77-105.	11.8	292
3	Mussel-Mimetic Protein-Based Adhesive Hydrogel. Biomacromolecules, 2014, 15, 1579-1585.	2.6	265
4	Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 369-382.	1.9	178
5	Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. Journal of Controlled Release, 2009, 133, 37-43.	4.8	168
6	Advanced hybrid nanomaterials for biomedical applications. Progress in Materials Science, 2020, 114, 100686.	16.0	140
7	New opportunities for nanoparticles in cancer immunotherapy. Biomaterials Research, 2018, 22, 24.	3.2	137
8	Polymers for cell/tissue anti-adhesion. Progress in Polymer Science, 2015, 44, 28-61.	11.8	121
9	Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. Journal of Biomedical Materials Research Part B, 1989, 23, 87-104.	3.0	120
10	Fabrication of core–shell microcapsules using PLGA and alginate for dual growth factor delivery system. Journal of Controlled Release, 2010, 147, 193-201.	4.8	109
11	Micellization and Gelation of Aqueous Solutions of Star-Shaped PLLAâ^'PEO Block Copolymers. Macromolecules, 2003, 36, 4115-4124.	2.2	100
12	Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. Journal of Controlled Release, 2012, 160, 676-684.	4.8	95
13	Polymeric Scaffolds for Regenerative Medicine. Polymer Reviews, 2011, 51, 23-52.	5.3	93
14	Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials, 2003, 24, 2213-2223.	5.7	92
15	In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials, 2010, 31, 9266-9272.	5.7	92
16	Preparation of TGF-β1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells. Journal of Controlled Release, 2010, 147, 84-91.	4.8	91
17	Apatiteâ€coated poly(lacticâ€ <i>co</i> â€glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2008, 85A, 747-756.	2.1	89
18	Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. International Journal of Pharmaceutics, 2008, 346, 57-63.	2.6	88

#	Article	IF	CITATIONS
19	Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials, 2009, 30, 3742-3748.	5.7	86
20	Heparin-like anticoagulant activity of sulphonated poly(ethylene oxide) and sulphonated poly(ethylene oxide)-grafted polyurethane. Biomaterials, 1995, 16, 467-471.	5.7	83
21	Negative cilia concept for thromboresistance: Synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. Journal of Biomedical Materials Research Part B, 1991, 25, 561-575.	3.0	79
22	Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films. Colloids and Surfaces B: Biointerfaces, 2000, 18, 371-379.	2.5	79
23	Synthesis and Characterization of Star-Shaped PLLAâ PEO Block Copolymers with Temperature-Sensitive Solâ 'Gel Transition Behavior. Macromolecules, 2001, 34, 8821-8824.	2.2	79
24	Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 21145-21154.	4.0	74
25	A Bioinspired Scaffold with Anti-Inflammatory Magnesium Hydroxide and Decellularized Extracellular Matrix for Renal Tissue Regeneration. ACS Central Science, 2019, 5, 458-467.	5.3	73
26	Surface characteristics and biocompatibility of lactide-based poly(ethylene glycol) scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 667-680.	1.9	71
27	Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(lactide- <i>co</i> -glycolide) Implants. ACS Nano, 2018, 12, 6917-6925.	7.3	71
28	Temperature-Sensitive Poly(caprolactone-co-trimethylene carbonate)â^'Poly(ethylene) Tj ETQq0 0 0 rgBT /Overle Macromolecules, 2008, 41, 6486-6492.	ock 10 Tf 5 2.2	50 387 Td (gly 63
29	Time-Dependent Alginate/Polyvinyl Alcohol Hydrogels as Injectable Cell Carriers. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 863-876.	1.9	57
30	Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. Journal of Materials Chemistry B, 2013, 1, 2764.	2.9	54
31	Shapeâ€Memory Effect by Specific Biodegradable Polymer Blending for Biomedical Applications. Macromolecular Bioscience, 2014, 14, 667-678.	2.1	53
32	Stiffness of Hydrogels Regulates Cellular Reprogramming Efficiency Through Mesenchymalâ€ŧoâ€Epithelial Transition and Stemness Markers. Macromolecular Bioscience, 2016, 16, 199-206.	2.1	53
33	An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH) ₂ to improve <i>in vivo</i> bone regeneration. Biomaterials Science, 2020, 8, 937-948.	2.6	53
34	Dual Growth Factor Delivery Using Biocompatible Core–Shell Microcapsules for Angiogenesis. Small, 2013, 9, 3468-3476.	5.2	52
35	Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration. ACS Nano, 2021, 15, 7575-7585.	7.3	52
36	Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials, 2019, 221, 119418.	5.7	51

#	Article	IF	CITATIONS
37	A Poly(lactide) Stereocomplex Structure with Modified Magnesium Oxide and Its Effects in Enhancing the Mechanical Properties and Suppressing Inflammation. Small, 2014, 10, 3783-3794.	5.2	50
38	Platelet and bacterial repellence on sulfonated poly(ethylene glycol)-acrylate copolymer surfaces. Colloids and Surfaces B: Biointerfaces, 2000, 18, 355-370.	2.5	48
39	Advanced PLGA hybrid scaffold with a bioactive PDRN/BMP2 nanocomplex for angiogenesis and bone regeneration using human fetal MSCs. Science Advances, 2021, 7, eabj1083.	4.7	47
40	Nitric Oxide Releasing Coronary Stent: A New Approach Using Layer-by-Layer Coating and Liposomal Encapsulation. Small, 2016, 12, 6012-6023.	5.2	45
41	Sulfonated poly(ethylene oxide)-grafted polyurethane copolymer for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 163-174.	1.9	44
42	In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives. Journal of Applied Polymer Science, 2003, 89, 3272-3278.	1.3	44
43	In Vivo Biocompatibility of Sulfonated PEO-grafted Polyurethanes for Polymer Heart Valve and Vascular Graft. Artificial Organs, 2006, 30, 955-959.	1.0	44
44	Cationic Nanoparticle-Mediated Activation of Natural Killer Cells for Effective Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2020, 12, 56731-56740.	4.0	43
45	Novel anti-calcification treatment of biological tissues by grafting of sulphonated poly(ethylene) Tj ETQq1 1 0.7	'84314 rgB	BT /Qyerlock 1
46	Thermal gelling polyalanine-poloxamine-polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect. Soft Matter, 2011, 7, 456-462.	1.2	42
47	Magnesium hydroxide-incorporated PLGA composite attenuates inflammation and promotes BMP2-induced bone formation in spinal fusion. Journal of Tissue Engineering, 2020, 11, 204173142096759.	2.3	42
48	Beneficial effect of hydrophilized porous polymer scaffolds in tissueâ€engineered cartilage formation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 252-260.	1.6	41
49	Heparin-Conjugated Pluronic Nanogels as Multi-Drug Nanocarriers for Combination Chemotherapy. Molecular Pharmaceutics, 2013, 10, 685-693.	2.3	39
50	Injectable in situ-forming hydrogel for cartilage tissue engineering. Journal of Materials Chemistry B, 2013, 1, 3314.	2.9	38
51	Growth factors-loaded stents modified with hyaluronic acid and heparin for induction of rapid and tight re-endothelialization. Colloids and Surfaces B: Biointerfaces, 2016, 141, 602-610.	2.5	38
52	In vivo biostability and calcification-resistance of surface-modified PU-PEO-SO3. Journal of Biomedical Materials Research Part B, 1993, 27, 1063-1073.	3.0	37
53	The role of tauroursodeoxycholic acid on adipogenesis of human adipose-derived stem cells by modulation of ER stress. Biomaterials, 2014, 35, 2851-2858.	5.7	37
54	Biocompatible PEG Grafting on DLC-coated Nitinol Alloy for Vascular Stents. Journal of Bioactive and Compatible Polymers, 2009, 24, 316-328.	0.8	36

#	Article	IF	CITATIONS
55	Synthesis and characterization of novel thermo-responsive F68 block copolymers with cell-adhesive RGD peptide. Journal of Colloid and Interface Science, 2011, 360, 78-85.	5.0	36
56	Induction of Re-Differentiation of Passaged Rat Chondrocytes Using a Naturally Obtained Extracellular Matrix Microenvironment. Tissue Engineering - Part A, 2013, 19, 978-988.	1.6	36
57	Design, synthesis, screening, and molecular modeling study of a new series of ROS1 receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5622-5626.	1.0	33
58	Improvement of Interfacial Adhesion of Biodegradable Polymers Coated on Metal Surface by Nanocoupling. Langmuir, 2011, 27, 14232-14239.	1.6	33
59	Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomaterialia, 2020, 111, 91-101.	4.1	33
60	Functional PLGA Scaffolds for Chondrogenesis of Boneâ€Marrowâ€Derived Mesenchymal Stem Cells. Macromolecular Bioscience, 2009, 9, 221-229.	2.1	32
61	Design, synthesis and biological evaluation of new potent and highly selective ROS1-tyrosine kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4720-4723.	1.0	30
62	Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomaterials Science, 2021, 9, 1903-1923.	2.6	29
63	Antithrombogenicity of lumbrokinase-immobilized polyurethane. Journal of Biomedical Materials Research Part B, 1994, 28, 1069-1077.	3.0	27
64	Poly (4-vinylimidazole) as nonviral gene carrier: in vitro and in vivo transfection. Acta Biomaterialia, 2005, 1, 165-172.	4.1	27
65	Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells. Journal of Controlled Release, 2010, 143, 23-30.	4.8	27
66	Surface characteristics and properties of lumbrokinase-immobilized polyurethane. Journal of Biomedical Materials Research Part B, 1995, 29, 403-409.	3.0	26
67	Effect of Solvent on Drug Release and a Spray-Coated Matrix of a Sirolimus-Eluting Stent Coated with Poly(lactic- <i>co</i> -glycolic acid). Langmuir, 2014, 30, 10098-10106.	1.6	26
68	Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. Journal of Colloid and Interface Science, 2015, 460, 189-199.	5.0	26
69	Fabrication and characteristics of dual functionalized vascular stent by spatio-temporal coating. Acta Biomaterialia, 2016, 38, 143-152.	4.1	26
70	Effect of RGDâ€Immobilized Dualâ€Pore Poly(<scp>l</scp> â€Lactic Acid) Scaffolds on Chondrocyte Proliferation and Extracellular Matrix Production. Artificial Organs, 2008, 32, 981-989.	1.0	25
71	Effect of various shaped magnesium hydroxide particles on mechanical and biological properties of poly(lactic- co -glycolic acid) composites. Journal of Industrial and Engineering Chemistry, 2018, 59, 266-276.	2.9	25
72	New Aromatictert-Amines for Application as Photoinitiator Components in Photocurable Dental Materials. Macromolecular Chemistry and Physics, 2003, 204, 1628-1635.	1.1	24

#	Article	IF	CITATIONS
73	The antagonistic effect of magnesium hydroxide particles on vascular endothelial activation induced by acidic PLGA degradation products. Biomaterials Science, 2021, 9, 892-907.	2.6	24
74	Prevention of chemotherapy-induced premature ovarian insufficiency in mice by scaffold-based local delivery of human embryonic stem cell-derived mesenchymal progenitor cells. Stem Cell Research and Therapy, 2021, 12, 431.	2.4	24
75	Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Biomaterials Research, 2016, 20, 7.	3.2	23
76	Preparation of Biodegradable Polymer Scaffolds with Dual Pore System for Tissue Regeneration. Macromolecular Symposia, 2007, 249-250, 145-150.	0.4	22
77	Comparison of phytoncide with sirolimus as a novel drug candidate for drug-eluting stent. Biomaterials, 2015, 44, 1-10.	5.7	22
78	Multi-lineage differentiation of human mesenchymal stromal cells on the biophysical microenvironment of cell-derived matrix. Cell and Tissue Research, 2014, 357, 781-792.	1.5	21
79	Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: In vitro and in vivo. Macromolecular Research, 2015, 23, 387-395.	1.0	21
80	Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity. Tissue Engineering and Regenerative Medicine, 2021, 18, 355-367.	1.6	21
81	Reinforcement of Interfacial Adhesion of a Coated Polymer Layer on a Cobalt–Chromium Surface for Drug-Eluting Stents. Langmuir, 2014, 30, 8020-8028.	1.6	20
82	Promotion of Bone Regeneration Using Bioinspired PLGA/MH/ECM Scaffold Combined with Bioactive PDRN. Materials, 2021, 14, 4149.	1.3	20
83	Combination of Metalâ€Phenolic Networkâ€Based Immunoactive Nanoparticles and Bipolar Irreversible Electroporation for Effective Cancer Immunotherapy. Small, 2022, 18, e2200316.	5.2	20
84	Therapeutic ultrasound effects on interleukin-1β stimulated cartilage construct in vitro. Ultrasound in Medicine and Biology, 2007, 33, 286-295.	0.7	19
85	Injectable in situ-forming hydrogels for a suppression of drug burst from drug-loaded microcapsules. Soft Matter, 2012, 8, 7638.	1.2	18
86	Chondrocyte 3D-culture in RGD-modified crosslinked hydrogel with temperature-controllable modulus. Macromolecular Research, 2012, 20, 106-111.	1.0	18
87	Synthesis of Norbornene-Derived Polymers Having Pendant Phenoxyquinones for Photochromism. Macromolecules, 2001, 34, 4291-4293.	2.2	17
88	Peptide-grafted lactide-based poly(ethylene glycol) porous scaffolds for specific cell adhesion. Macromolecular Research, 2010, 18, 526-532.	1.0	17
89	Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials. Macromolecular Research, 2014, 22, 210-218.	1.0	17
90	Underlying mechanism for suppression of vascular smooth muscle cells by green tea polyphenol EGCG released from biodegradable polymers for stent application. Journal of Biomedical Materials Research - Part A, 2010, 95A, 424-433.	2.1	16

#	Article	IF	CITATIONS
91	A Promising Approach for Improving the Coating Stability and <l>In Vivo</l> Performance of Biodegradable Polymer-Coated Sirolimus-Eluting Stent. Journal of Biomedical Nanotechnology, 2016, 12, 2015-2028.	0.5	16
92	Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses. International Materials Reviews, 2020, 65, 445-462.	9.4	16
93	Antithrombogenicity of hydrophilic polyurethane-hydrophobic polystyrene IPNs. II. In vitro and ex vivo studies. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 281-295.	1.9	15
94	Development of a local antibiotic delivery system using fibrin glue. Journal of Controlled Release, 1996, 39, 65-70.	4.8	15
95	Characteristics of PLLA films blended with PEG block copolymers as additives for biodegradable polymer stents. Biomedical Engineering Letters, 2011, 1, 42-48.	2.1	15
96	Allylimidazolium salt based antibacterial polymer coatings produced by thiol–ene photocuring. Reactive and Functional Polymers, 2015, 87, 53-60.	2.0	15
97	Synergistic effect of anti-platelet and anti-inflammation of drug-coated Co–Cr substrates for prevention of initial in-stent restenosis. Colloids and Surfaces B: Biointerfaces, 2016, 140, 353-360.	2.5	15
98	Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform. International Journal of Molecular Sciences, 2020, 21, 191.	1.8	15
99	Antithrombogenicity of hydrophilic polyurethane-hydrophobic polystyrene IPNs. I. Synthesis and characterization. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 195-210.	1.9	14
100	Effect of Surface-activated PLLA Scaffold on Apatite Formation in Simulated Body Fluid. Journal of Bioactive and Compatible Polymers, 2010, 25, 27-39.	0.8	14
101	Thermoreversible Radial Growth of Micellar Assembly for Hydrogel Formation Using Zwitterionic Oligopeptide Copolymer. Macromolecules, 2011, 44, 2269-2275.	2.2	14
102	Surface grafting of blood compatible zwitterionic poly(ethylene glycol) on diamond-like carbon-coated stent. Journal of Materials Science: Materials in Medicine, 2011, 22, 507-514.	1.7	14
103	Visible light-induced photocurable (forming a film) low molecular weight chitosan derivatives for biomedical applications: Synthesis, characterization and in vitro biocompatibility. Journal of Industrial and Engineering Chemistry, 2012, 18, 1258-1262.	2.9	14
104	Quantitative Analysis of Temporal and Spatial Variations of Chondrocyte Behavior in Engineered Cartilage during Long-Term Culture. Annals of Biomedical Engineering, 2007, 35, 419-428.	1.3	13
105	Evaluation of the effect of expansion and shear stress on a self-assembled endothelium mimicking nanomatrix coating for drug eluting stents in vitro and in vivo. Biofabrication, 2014, 6, 035019.	3.7	13
106	Silicone rubber with mussel-inspired adhesive coatings for enhancing antifouling property and blood compatibility. Macromolecular Research, 2017, 25, 841-848.	1.0	13
107	PCL microspheres containing magnesium hydroxide for dermal filler with enhanced physicochemical and biological performances. Journal of Industrial and Engineering Chemistry, 2019, 80, 854-861.	2.9	12
108	PLGA Microspheres Containing Hydrophobically Modified Magnesium Hydroxide Particles for Acid Neutralization-Mediated Anti-Inflammation. Tissue Engineering and Regenerative Medicine, 2021, 18, 613-622.	1.6	12

#	Article	IF	CITATIONS
109	Multifunctional Biodegradable Vascular PLLA Scaffold with Improved X-ray Opacity, Anti-Inflammation, and Re-Endothelization. Polymers, 2021, 13, 1979.	2.0	12
110	Physical Properties and Biodegradation of Lactide-based Poly(ethy1ene glycol) Polymer Networks for Tissue Engineering. Polymer Bulletin, 2003, 50, 107-114.	1.7	11
111	Effect of stromal cell derived factor-1α release from heparin-coated Co-Cr stent substrate on the recruitment of endothelial progenitor cells. Macromolecular Research, 2015, 23, 1159-1167.	1.0	11
112	The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent. Materials Science and Engineering C, 2017, 78, 39-46.	3.8	11
113	Scaffold-supported extracellular matrices preserved by magnesium hydroxide nanoparticles for renal tissue regeneration. Biomaterials Science, 2020, 8, 5427-5440.	2.6	11
114	Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural Differentiation of Neural Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 7047.	1.8	11
115	Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly(L-lactide) composites. Macromolecular Research, 2014, 22, 1032-1041.	1.0	10
116	Crack prevention of biodegradable polymer coating on metal facilitated by a nano-coupled interlayer. Journal of Bioactive and Compatible Polymers, 2014, 29, 515-526.	0.8	10
117	Surface-Modifying Effect of Zwitterionic Polyurethane Oligomers Complexed with Metal Ions on Blood Compatibility. Tissue Engineering and Regenerative Medicine, 2022, 19, 35-47.	1.6	10
118	Poly(L-Lactic Acid) Composite with Surface-Modified Magnesium Hydroxide Nanoparticles by Biodegradable Oligomer for Augmented Mechanical and Biological Properties. Materials, 2021, 14, 5869.	1.3	10
119	Fat Graft with Allograft Adipose Matrix and Magnesium Hydroxide-Incorporated PLGA Microspheres for Effective Soft Tissue Reconstruction. Tissue Engineering and Regenerative Medicine, 2022, 19, 553-563.	1.6	10
120	Murine ovarian follicle culture in PEG-hydrogel: Effects of mechanical properties and the hormones FSH and LH on development. Macromolecular Research, 2015, 23, 377-386.	1.0	9
121	Bioactive PCL microspheres with enhanced biocompatibility and collagen production for functional hyaluronic acid dermal fillers. Biomaterials Science, 2022, 10, 947-959.	2.6	9
122	Surface modification of polyurethane for enhanced blood compatibility. Makromolekulare Chemie Macromolecular Symposia, 1990, 33, 319-326.	0.6	8
123	Controlled preparation of poly(ethylene glycol) and poly(<scp>L</scp> ″actide) block copolymers in the presence of a monomer activator. Journal of Polymer Science Part A, 2009, 47, 5917-5922.	2.5	8
124	Decellularized PLGA-based scaffolds and their osteogenic potential with bone marrow stromal cells. Macromolecular Research, 2011, 19, 1090-1096.	1.0	8
125	Highly effective induction of cell-derived extracellular matrix by macromolecular crowding for osteogenic differentiation of mesenchymal stem cells. Journal of Industrial and Engineering Chemistry, 2022, 107, 391-400.	2.9	8
126	Surface structure and inert surface characteristics of perfluorodecanoic acid-grafted polyurethane. Journal of Applied Polymer Science, 1993, 47, 761-769.	1.3	7

#	Article	IF	CITATIONS
127	Fabrication and controlled release of electrosprayed ReoPro-loaded metal surface for vascular stent. Macromolecular Research, 2011, 19, 501-506.	1.0	6
128	Improvement of mechanical properties and blood compatibility of PLLA nanocomposites by incorporation of polyhedral oligomeric silsesquioxane. Macromolecular Research, 2012, 20, 996-1001.	1.0	6
129	Characterization of naturally derived macromolecular matrix and its osteogenic activity with preosteoblasts. Macromolecular Research, 2012, 20, 868-874.	1.0	5
130	Comparison of Surface Functionalization of PLGA Composite to Immobilize Extracellular Vesicles. Polymers, 2021, 13, 3643.	2.0	5
131	Biomedical Polymer Nanofibers for Emerging Technology. , 2009, , 21-42.		3
132	Beneficial effect of sulfonated PEO-grafted polyurethanes on calcification and lipid adsorption of vascular implants. Macromolecular Research, 2010, 18, 1133-1136.	1.0	3
133	Advanced Stents for Cardiovascular Applications. Biosystems and Biorobotics, 2016, , 407-426.	0.2	3
134	Facile Surface Modification of Nitinol with Dopamine-Conjugated Hyaluronic Acid for Improving Blood Compatibility. Journal of Biomaterials and Tissue Engineering, 2016, 6, 780-787.	0.0	3
135	Synthesis and Biological Activity of New 4-(Pyridin-4-yl)-(3-methoxy-5-methylphenyl)-1H-pyrazoles Derivatives as ROS Receptor Tyrosine Kinase Inhibitors. Bulletin of the Korean Chemical Society, 2012, 33, 3629-3634.	1.0	3
136	Preparation of New Bioactive Hybrid Bone Cements Containing Bis-GMA Derivatives as a Prepolymer. Macromolecular Materials and Engineering, 2006, 291, 684-689.	1.7	2
137	The efficacy of acrylic acid grafting and arginine–glycine–aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits. Graefe's Archive for Clinical and Experimental Ophthalmology, 2007, 245, 855-862.	1.0	2
138	Preparation of Polymeric Micelles Consisting of Poly(propylene glycol) and Poly(caprolactone). Journal of Nanoscience and Nanotechnology, 2011, 11, 10990-10995.	0.9	2
139	A Robustly Supported Extracellular Matrix Improves the Intravascular Delivery Efficacy of Endothelial Progenitor Cells. Advanced Functional Materials, 2021, 31, 2100324.	7.8	2
140	Heparin Immobilized Small Intestinal Submucosa for Cardiovascular Applications. Macromolecular Symposia, 2007, 249-250, 120-123.	0.4	1
141	Establishment and characterization of human engineered cells stably expressing large extracellular matrix proteins. Archives of Pharmacal Research, 2014, 37, 149-156.	2.7	1
142	Optimized sirolimus-eluting stent by coating asymmetrically with biodegradable and cytocompatible polymers. Asian Journal of Pharmaceutical Sciences, 2016, 11, 160-161.	4.3	1