Rupamanjari Majumder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4240059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Disorder to Normal Rhythm: Traveling-Wave Control of Cardiac Arrhythmias. Physical Review Applied, 2022, 17, .	3.8	4
2	Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination. ELife, 2021, 10, .	6.0	42
3	Electrophysiological Characterization of Human Atria: The Understated Role of Temperature. Frontiers in Physiology, 2021, 12, 639149.	2.8	4
4	The effects of inhomogeneities on scroll-wave dynamics in an anatomically realistic mathematical model for canine ventricular tissue. Physics Open, 2021, 9, 100090.	1.5	1
5	Pulsed low-energy stimulation initiates electric turbulence in cardiac tissue. PLoS Computational Biology, 2021, 17, e1009476.	3.2	6
6	Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study. PLoS ONE, 2020, 15, e0230214.	2.5	3
7	In silico optical control of pinned electrical vortices in an excitable biological medium. New Journal of Physics, 2020, 22, 023034.	2.9	4
8	Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating. ELife, 2020, 9, .	6.0	12
9	Response by Feola et al to Letter Regarding Article, "Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayersâ€+ Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006130.	4.8	0
10	Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. ELife, 2018, 7, .	6.0	49
11	Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block. Cardiovascular Research, 2017, 113, 354-366.	3.8	31
12	Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	50
13	Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Scientific Reports, 2016, 6, 24334.	3.3	22
14	A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current. PLoS Computational Biology, 2016, 12, e1004946.	3.2	15
15	Forced fusion of human ventricular scar cells with cardiomyocytes suppresses arrhythmogenicity in a co-culture model. Cardiovascular Research, 2015, 107, 601-612.	3.8	3
16	Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1024-H1035.	3.2	15