Michael S Fanselow

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4239450/michael-s-fanselow-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

226 24,589 76 155 h-index g-index citations papers 5.8 270 27,409 7.27 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
226	Anxiety, fear, panic: An approach to assessing the defensive behavior system across the predatory imminence continuum <i>Learning and Behavior</i> , 2022 , 1	1.3	O
225	CPP impairs contextual learning at concentrations below those that block pyramidal neuron NMDARs and LTP in the CA1 region of the hippocampus. <i>Neuropharmacology</i> , 2022 , 202, 108846	5.5	0
224	The effect of stress and reward on encoding future fear memories. <i>Behavioural Brain Research</i> , 2022 , 417, 113587	3.4	Ο
223	The Evolution of Memory as an Immediate Perceptual Identification Mechanism 2022, 285-301		
222	Pre-treatment hippocampal functioning impacts context renewal for cholinergic modulated exposure therapy. <i>Biological Psychology</i> , 2021 , 165, 108167	3.2	O
221	Pavlovian occasion setting in human fear and appetitive conditioning: Effects of trait anxiety and trait depression. <i>Behaviour Research and Therapy</i> , 2021 , 147, 103986	5.2	1
220	Sexually dimorphic muscarinic acetylcholine receptor modulation of contextual fear learning in the dentate gyrus. <i>Neurobiology of Learning and Memory</i> , 2021 , 185, 107528	3.1	0
219	Engram Size Varies with Learning and Reflects Memory Content and Precision. <i>Journal of Neuroscience</i> , 2021 , 41, 4120-4130	6.6	0
218	Connectivity characterization of the mouse basolateral amygdalar complex. <i>Nature Communications</i> , 2021 , 12, 2859	17.4	9
217	Post-stress glucose consumption facilitates hormesis and resilience to severe stress. <i>Stress</i> , 2021 , 24, 645-651	3	
216	Extinction and discrimination in a Bayesian model of context fear conditioning (BaconX). <i>Hippocampus</i> , 2021 , 31, 790-814	3.5	5
215	A Basomedial Amygdala to Intercalated Cells Microcircuit Expressing PACAP and Its Receptor PAC1 Regulates Contextual Fear. <i>Journal of Neuroscience</i> , 2021 , 41, 3446-3461	6.6	7
214	Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson's disease. <i>Neurobiology of Disease</i> , 2021 , 158, 105478	7.5	O
213	Impact of stress resilience and susceptibility on fear learning, anxiety, and alcohol intake. <i>Neurobiology of Stress</i> , 2021 , 15, 100335	7.6	1
212	Region-Dependent Modulation of Neural Plasticity in Limbic Structures Early after Traumatic Brain Injury. <i>Neurotrauma Reports</i> , 2021 , 2, 200-213	1.6	O
211	Maladaptive Properties of Context-Impoverished Memories. <i>Current Biology</i> , 2020 , 30, 2300-2311.e6	6.3	12
210	Exposure Therapy for Post-Traumatic Stress Disorder: Factors of Limited Success and Possible Alternative Treatment. <i>Brain Sciences</i> , 2020 , 10,	3.4	6

(2018-2020)

209	The role of the ventromedial prefrontal cortex and context in regulating fear learning and extinction. <i>Psychology and Neuroscience</i> , 2020 , 13, 459-472	1.9	2
208	Chronic opioid pretreatment potentiates the sensitization of fear learning by trauma. <i>Neuropsychopharmacology</i> , 2020 , 45, 482-490	8.7	5
207	Sex Differences in Behavioral Sensitivities After Traumatic Brain Injury. <i>Frontiers in Neurology</i> , 2020 , 11, 553190	4.1	2
206	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. <i>Journal of Neuroscience</i> , 2020 , 40, 8329-8342	6.6	11
205	Sensory sensitivity as a link between concussive traumatic brain injury and PTSD. <i>Scientific Reports</i> , 2019 , 9, 13841	4.9	11
204	Dissociation in Effective Treatment and Behavioral Phenotype Between Stress-Enhanced Fear Learning and Learned Helplessness. <i>Frontiers in Behavioral Neuroscience</i> , 2019 , 13, 104	3.5	5
203	Cholinergic Modulation of Exposure Disrupts Hippocampal Processes and Augments Extinction: Proof-of-Concept Study With Social Anxiety Disorder. <i>Biological Psychiatry</i> , 2019 , 86, 703-711	7.9	10
202	Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. <i>Cell</i> , 2019 , 177, 1280-1292.e20	56.2	109
201	Cholinergic Signaling Alters Stress-Induced Sensitization of Hippocampal Contextual Learning. <i>Frontiers in Neuroscience</i> , 2019 , 13, 251	5.1	5
200	Post-Stress Fructose and Glucose Ingestion Exhibit Dissociable Behavioral and Physiological Effects. <i>Nutrients</i> , 2019 , 11,	6.7	2
199	Timing and the transition between modes in the defensive behavior system. <i>Behavioural Processes</i> , 2019 , 166, 103890	1.6	11
198	Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. <i>F1000Research</i> , 2019 , 8,	3.6	28
197	Pair-housing rats does not protect from behavioral consequences of an acute traumatic experience. <i>Behavioral Neuroscience</i> , 2019 , 133, 232-239	2.1	1
196	Emotion, motivation and function. Current Opinion in Behavioral Sciences, 2018, 19, 105-109	4	15
195	The Role of Learning in Threat Imminence and Defensive Behaviors. <i>Current Opinion in Behavioral Sciences</i> , 2018 , 24, 44-49	4	25
194	Building physiological toughness: Some aversive events during extinction may attenuate return of fear. <i>Journal of Behavior Therapy and Experimental Psychiatry</i> , 2018 , 58, 18-28	2.6	17
193	A return to the psychiatric dark ages with a two-system framework for fear. <i>Behaviour Research and Therapy</i> , 2018 , 100, 24-29	5.2	44
192	Stress-Enhanced Fear Learning, a Robust Rodent Model of Post-Traumatic Stress Disorder. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	11

191	Indirect Targeting of Subsuperficial Brain Structures With Transcranial Magnetic Stimulation Reveals a Promising Way Forward in the Treatment of Fear. <i>Biological Psychiatry</i> , 2018 , 84, 80-81	7.9	1
190	Pathways towards the proliferation of avoidance in anxiety and implications for treatment. <i>Behaviour Research and Therapy</i> , 2017 , 96, 3-13	5.2	31
189	2* Nicotinic acetylcholine receptors influence hippocampus-dependent learning and memory in adolescent mice. <i>Learning and Memory</i> , 2017 , 24, 231-244	2.8	8
188	Optogenetic excitation of cholinergic inputs to hippocampus primes future contextual fear associations. <i>Scientific Reports</i> , 2017 , 7, 2333	4.9	16
187	The Danger of LeDoux and Pine's Two-System Framework for Fear. <i>American Journal of Psychiatry</i> , 2017 , 174, 1120-1121	11.9	33
186	Impaired extinction of cued fear memory and abnormal dendritic morphology in the prelimbic and infralimbic cortices in VPAC2 receptor (VIPR2)-deficient mice. <i>Neurobiology of Learning and Memory</i> , 2017 , 145, 222-231	3.1	11
185	Neurobiology of Fear Memory 2017 , 487-503		1
184	MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9188-9193	11.5	11
183	The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing?. <i>Learning and Memory</i> , 2017 , 24, 400-406	2.8	11
182	Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology, 2016, 41, 45-57	8.7	57
181	Conditioning- and time-dependent increases in context fear and generalization. <i>Learning and Memory</i> , 2016 , 23, 379-85	2.8	51
180	A Safe Haven: Investigating Social-Support Figures as Prepared Safety Stimuli. <i>Psychological Science</i> , 2016 , 27, 1051-60	7.9	42
179	Retrieval and Reconsolidation Accounts of Fear Extinction. <i>Frontiers in Behavioral Neuroscience</i> , 2016 , 10, 89	3.5	17
178	Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event. <i>Hippocampus</i> , 2016 , 26, 804-15	3.5	3
177	No effect of glucose administration in a novel contextual fear generalization protocol in rats. <i>Translational Psychiatry</i> , 2016 , 6, e903	8.6	9
176	Graded fear generalization enhances the level of cfos-positive neurons specifically in the basolateral amygdala. <i>Journal of Neuroscience Research</i> , 2016 , 94, 1393-1399	4.4	17
175	Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. <i>Psychopharmacology</i> , 2015 , 232, 2181-	.94.7	17
174	Neurobehavioral perspectives on the distinction between fear and anxiety. <i>Learning and Memory</i> , 2015 , 22, 417-25	2.8	168

(2012-2015)

173	Enrichment rescues contextual discrimination deficit associated with immediate shock. Hippocampus, 2015 , 25, 385-92	3.5	38
172	The Origins and Organization of Vertebrate Pavlovian Conditioning. <i>Cold Spring Harbor Perspectives in Biology</i> , 2015 , 8, a021717	10.2	56
171	A Bayesian context fear learning algorithm/automaton. <i>Frontiers in Behavioral Neuroscience</i> , 2015 , 9, 112	3.5	25
170	Sensitization of fear learning to mild unconditional stimuli in male and female rats. <i>Behavioral Neuroscience</i> , 2015 , 129, 62-7	2.1	22
169	Assigning Function to Adult-Born Neurons: A Theoretical Framework for Characterizing Neural Manipulation of Learning. <i>Frontiers in Systems Neuroscience</i> , 2015 , 9, 182	3.5	7
168	Isomorphisms between psychological processes and neural mechanisms: from stimulus elements to genetic markers of activity. <i>Neurobiology of Learning and Memory</i> , 2014 , 108, 5-13	3.1	3
167	The role of postnatal neurogenesis in supporting remote memory and spatial metric processing. Hippocampus, 2014 , 24, 1663-71	3.5	22
166	The role of the IGABA(A) receptor in ovarian cycle-linked changes in hippocampus-dependent learning and memory. <i>Neurochemical Research</i> , 2014 , 39, 1140-6	4.6	23
165	Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. <i>Journal of Neuroscience</i> , 2014 , 34, 8462-6	6.6	137
164	Pavlovian Fear Conditioning 2014 , 117-141		7
164	Pavlovian Fear Conditioning 2014 , 117-141 Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala 2014 , 465-496		7
		7.9	
163	Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala 2014 , 465-496 Amnesia for early life stress does not preclude the adult development of posttraumatic stress		2
163 162	Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala 2014 , 465-496 Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. <i>Biological Psychiatry</i> , 2014 , 76, 306-14		2 47
163 162 161	Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala 2014 , 465-496 Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. <i>Biological Psychiatry</i> , 2014 , 76, 306-14 Fear and anxiety take a double hit from vagal nerve stimulation. <i>Biological Psychiatry</i> , 2013 , 73, 1043-4 Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system	7.9	2 47 14
163 162 161 160	Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala 2014, 465-496 Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. <i>Biological Psychiatry</i> , 2014, 76, 306-14 Fear and anxiety take a double hit from vagal nerve stimulation. <i>Biological Psychiatry</i> , 2013, 73, 1043-4 Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system in patients with irritable bowel syndrome. <i>Gastroenterology</i> , 2013, 145, 1253-61.e1-3 Cholinergic blockade frees fear extinction from its contextual dependency. <i>Biological Psychiatry</i> ,	7.9	2 47 14 67
163 162 161 160	Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala 2014, 465-496 Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. <i>Biological Psychiatry</i> , 2014, 76, 306-14 Fear and anxiety take a double hit from vagal nerve stimulation. <i>Biological Psychiatry</i> , 2013, 73, 1043-4 Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system in patients with irritable bowel syndrome. <i>Gastroenterology</i> , 2013, 145, 1253-61.e1-3 Cholinergic blockade frees fear extinction from its contextual dependency. <i>Biological Psychiatry</i> , 2013, 73, 345-52 Prefrontal microcircuit underlies contextual learning after hippocampal loss. <i>Proceedings of the</i>	7.9 13.3 7.9	2 47 14 67 53

155	Temporal factors control hippocampal contributions to fear renewal after extinction. <i>Hippocampus</i> , 2012 , 22, 1096-106	3.5	41
154	Associative fear learning enhances sparse network coding in primary sensory cortex. <i>Neuron</i> , 2012 , 75, 121-32	13.9	76
153	Concussive brain injury enhances fear learning and excitatory processes in the amygdala. <i>Biological Psychiatry</i> , 2012 , 71, 335-43	7.9	107
152	Reinstatement of extinguished fear by an unextinguished conditional stimulus. <i>Frontiers in Behavioral Neuroscience</i> , 2012 , 6, 18	3.5	15
151	Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. <i>Cell</i> , 2012 , 149, 188-201	56.2	579
150	Juvenile neurogenesis makes essential contributions to adult brain structure and plays a sex-dependent role in fear memories. <i>Frontiers in Behavioral Neuroscience</i> , 2012 , 6, 3	3.5	33
149	Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction. <i>Stress</i> , 2012 , 15, 627-36	3	33
148	Contextual fear memories formed in the absence of the dorsal hippocampus decay across time. Journal of Neuroscience, 2012 , 32, 3393-7	6.6	53
147	Electrical synapses control hippocampal contributions to fear learning and memory. <i>Science</i> , 2011 , 331, 87-91	33.3	98
146	Selective knockdown of NMDA receptors in primary afferent neurons decreases pain during phase 2 of the formalin test. <i>Neuroscience</i> , 2011 , 172, 474-82	3.9	35
145	Design of a neurally plausible model of fear learning. Frontiers in Behavioral Neuroscience, 2011, 5, 41	3.5	30
144	Behavioral pharmacogenetic analysis on the role of the A GABA(A) receptor subunit in the ethanol-mediated impairment of hippocampus-dependent contextual learning. <i>Alcoholism: Clinical and Experimental Research</i> , 2011 , 35, 1948-59	3.7	19
143	Gamma-aminobutyric acid type A receptor B subunit forebrain-specific knockout mice are resistant to the amnestic effect of isoflurane. <i>Anesthesia and Analgesia</i> , 2011 , 113, 500-4	3.9	21
142	Genetic dissection of an amygdala microcircuit that gates conditioned fear. <i>Nature</i> , 2010 , 468, 270-6	50.4	578
141	Compensation in the neural circuitry of fear conditioning awakens learning circuits in the bed nuclei of the stria terminalis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 14881-6	11.5	62
140	Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. <i>Neuropsychopharmacology</i> , 2010 , 35, 1402-11	8.7	83
139	Are the dorsal and ventral hippocampus functionally distinct structures?. <i>Neuron</i> , 2010 , 65, 7-19	13.9	2005
138	From contextual fear to a dynamic view of memory systems. <i>Trends in Cognitive Sciences</i> , 2010 , 14, 7-15	14	155

(2007-2010)

137	Opioid regulation of Pavlovian overshadowing in fear conditioning. <i>Behavioral Neuroscience</i> , 2010 , 124, 510-9	2.1	18	
136	Role of interleukin-1beta in postoperative cognitive dysfunction. <i>Annals of Neurology</i> , 2010 , 68, 360-8	9.4	484	
135	The accurate measurement of fear memory in Pavlovian conditioning: Resolving the baseline issue. <i>Journal of Neuroscience Methods</i> , 2010 , 190, 235-9	3	45	
134	A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. <i>PLoS ONE</i> , 2010 , 5, e1	28.1/8	78	
133	Persistence of fear memory across time requires the basolateral amygdala complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11737-41	11.5	54	
132	Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11794-9	11.5	232	
131	Post-training excitotoxic lesions of the dorsal hippocampus attenuate generalization in auditory delay fear conditioning. <i>European Journal of Neuroscience</i> , 2009 , 29, 1692-700	3.5	19	
130	Exposure to a stressor produces a long lasting enhancement of fear learning in rats. <i>Stress</i> , 2009 , 12, 125-33	3	107	
129	Pavlovian conditioning of multiple opioid-like responses in mice. <i>Drug and Alcohol Dependence</i> , 2009 , 103, 74-83	4.9	31	
128	Gamma-aminobutyric acid type A receptor alpha 4 subunit knockout mice are resistant to the amnestic effect of isoflurane. <i>Anesthesia and Analgesia</i> , 2009 , 109, 1816-22	3.9	34	
127	Isoflurane suppresses stress-enhanced fear learning in a rodent model of post-traumatic stress disorder. <i>Anesthesiology</i> , 2009 , 110, 487-95	4.3	23	
126	The alpha1 subunit of the GABA(A) receptor modulates fear learning and plasticity in the lateral amygdala. <i>Frontiers in Behavioral Neuroscience</i> , 2009 , 3, 37	3.5	34	
125	Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. <i>Journal of Neurogenetics</i> , 2008 , 22, 315-31	1.6	142	
124	Inverse temporal contributions of the dorsal hippocampus and medial prefrontal cortex to the expression of long-term fear memories. <i>Learning and Memory</i> , 2008 , 15, 368-72	2.8	111	
123	A high through-put reverse genetic screen identifies two genes involved in remote memory in mice. <i>PLoS ONE</i> , 2008 , 3, e2121	3.7	25	
122	Dorsal hippocampus involvement in delay fear conditioning depends upon the strength of the tone-footshock association. <i>Hippocampus</i> , 2008 , 18, 640-54	3.5	57	
121	Brief flight to a familiar enclosure in response to a conditional stimulus in rats. <i>Journal of General Psychology</i> , 2007 , 134, 153-72	1	13	
120	Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. <i>Science</i> , 2007 , 317, 94-9	33.3	704	

119	Synapses, circuits, and the ontogeny of learning. Developmental Psychobiology, 2007, 49, 649-63	3	15
118	Morphine analgesic tolerance in 129P3/J and 129S6/SvEv mice. <i>Pharmacology Biochemistry and Behavior</i> , 2006 , 85, 769-79	3.9	10
117	Long-term memory deficits in Pavlovian fear conditioning in Ca2+/calmodulin kinase kinase alpha-deficient mice. <i>Molecular and Cellular Biology</i> , 2006 , 26, 9105-15	4.8	37
116	Context fear learning in the absence of the hippocampus. <i>Journal of Neuroscience</i> , 2006 , 26, 5484-91	6.6	264
115	Immediate shock deficit in fear conditioning: effects of shock manipulations. <i>Behavioral Neuroscience</i> , 2006 , 120, 873-9	2.1	61
114	The neuroscience of mammalian associative learning. <i>Annual Review of Psychology</i> , 2005 , 56, 207-34	26.1	544
113	Deletion of the mu opioid receptor results in impaired acquisition of Pavlovian context fear. <i>Neurobiology of Learning and Memory</i> , 2005 , 84, 33-41	3.1	23
112	Administration of epinephrine does not increase learning of fear to tone in rats anesthetized with isoflurane or desflurane. <i>Anesthesia and Analgesia</i> , 2005 , 100, 1333-1337	3.9	9
111	The effect of three inhaled anesthetics in mice harboring mutations in the GluR6 (kainate) receptor gene. <i>Anesthesia and Analgesia</i> , 2005 , 101, 143-8, table of contents	3.9	12
110	Lesions of the dorsal hippocampus block trace fear conditioned potentiation of startle. <i>Behavioral Neuroscience</i> , 2005 , 119, 834-8	2.1	35
109	Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. <i>Behavioral Neuroscience</i> , 2005 , 119, 1396-402	2.1	130
108	Bright light suppresses hyperactivity induced by excitotoxic dorsal hippocampus lesions in the rat. <i>Behavioral Neuroscience</i> , 2005 , 119, 1339-52	2.1	29
107	Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. <i>Neuroscience and Biobehavioral Reviews</i> , 2005 , 29, 1207-23	9	303
106	Modulation of an activity response with associative and nonassociative fear in the rat: a lighting differential influences the form of defensive behavior evoked after fear conditioning. <i>Learning and Behavior</i> , 2005 , 33, 454-63	1.3	13
105	Dorsal hippocampus NMDA receptors differentially mediate trace and contextual fear conditioning. <i>Hippocampus</i> , 2005 , 15, 665-74	3.5	130
104	Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learning and Memory, 2005 , 12, 327-33	2.8	78
103	Alpha 1 subunit-containing GABA type A receptors in forebrain contribute to the effect of inhaled anesthetics on conditioned fear. <i>Molecular Pharmacology</i> , 2005 , 68, 61-8	4.3	47
102	The role of muscarinic and nicotinic cholinergic neurotransmission in aversive conditioning: comparing pavlovian fear conditioning and inhibitory avoidance. <i>Learning and Memory</i> , 2004 , 11, 35-42	2.8	72

(2001-2004)

101	Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. Journal of Neuroscience, 2004 , 24, 3810-5	6.6	316
100	Light stimulus change evokes an activity response in the rat. Learning and Behavior, 2004, 32, 299-310		29
99	NMDA receptor modulation of incidental learning in Pavlovian context conditioning. <i>Behavioral Neuroscience</i> , 2004 , 118, 253-7	2.1	44
98	The amygdala, fear, and memory. Annals of the New York Academy of Sciences, 2003, 985, 125-34	6.5	224
97	Isoflurane antagonizes the capacity of flurothyl or 1,2-dichlorohexafluorocyclobutane to impair fear conditioning to context and tone. <i>Anesthesia and Analgesia</i> , 2003 , 96, 1010-1018	3.9	9
96	Differential effects of adding and removing components of a context on the generalization of conditional freezing <i>Journal of Experimental Psychology</i> , 2003 , 29, 78-83		27
95	The place of the hippocampus in fear conditioning. European Journal of Pharmacology, 2003, 463, 217-2	2 3 5.3	221
94	Dissecting the components of the central response to stress. <i>Nature Neuroscience</i> , 2003 , 6, 1011-2	25.5	35
93	NF-kappa B functions in synaptic signaling and behavior. <i>Nature Neuroscience</i> , 2003 , 6, 1072-8	25.5	568
92	Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13087-92	11.5	229
91	Pre-training prevents context fear conditioning deficits produced by hippocampal NMDA receptor blockade. <i>Neurobiology of Learning and Memory</i> , 2003 , 80, 123-9	3.1	64
90	Differential effects of adding and removing components of a context on the generalization of conditional freezing. <i>Journal of Experimental Psychology</i> , 2003 , 29, 78-83		21
89	Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. <i>Hippocampus</i> , 2002 , 12, 495-504	3.5	150
88	The hippocampus and Pavlovian fear conditioning: reply to Bast et al. <i>Hippocampus</i> , 2002 , 12, 561-5	3.5	27
87	Short-term memory resists the depressant effect of the nonimmobilizer 1-2-dichlorohexafluorocyclobutane (2N) more than long-term memory. <i>Anesthesia and Analgesia</i> , 2002 , 94, 631-9; table of contents	3.9	8
86	Sex differences, context preexposure, and the immediate shock deficit in Pavlovian context conditioning with mice. <i>Behavioral Neuroscience</i> , 2001 , 115, 26-32	2.1	102
85	Cholinergic modulation of pavlovian fear conditioning: effects of intrahippocampal scopolamine infusion. <i>Hippocampus</i> , 2001 , 11, 371-6	3.5	86
84	Hippocampus and contextual fear conditioning: recent controversies and advances. <i>Hippocampus</i> , 2001 , 11, 8-17	3.5	514

83	Altered GABAA Receptor Subunit and Splice Variant Expression in Rats Treated With Chronic Intermittent Ethanol. <i>Alcoholism: Clinical and Experimental Research</i> , 2001 , 25, 819-828	3.7	41
82	Body temperature as a conditional response measure for pavlovian fear conditioning. <i>Learning and Memory</i> , 2000 , 7, 353-6	2.8	21
81	Contextual fear, gestalt memories, and the hippocampus. <i>Behavioural Brain Research</i> , 2000 , 110, 73-81	3.4	572
80	Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology, 1999 , 21, 731-44	8.7	113
79	Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. <i>Neuron</i> , 1999 , 23, 229-32	13.9	713
78	Learning theory and neuropsychology: Configuring their disparate elements in the hippocampus <i>Journal of Experimental Psychology</i> , 1999 , 25, 275-283		37
77	Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. <i>Journal of Neuroscience</i> , 1999 , 19, 1106-14	6.6	513
76	Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. <i>Brain Research</i> , 1998 , 796, 132-42	3.7	161
75	Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats. <i>Behavioural Brain Research</i> , 1998 , 92, 1-9	3.4	39
74	The startled seahorse: is the hippocampus necessary for contextual fear conditioning?. <i>Trends in Cognitive Sciences</i> , 1998 , 2, 39-42	14	95
73	The hippocampus, consolidation and on-line memory. Current Opinion in Neurobiology, 1998, 8, 293-6	7.6	90
72	Pavlovian conditioning, negative feedback, and blocking: mechanisms that regulate association formation. <i>Neuron</i> , 1998 , 20, 625-7	13.9	110
71	Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. <i>Journal of Neuroscience</i> , 1998 , 18, 3426-32	6.6	197
70	Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. <i>Neurobiology of Learning and Memory</i> , 1997 , 67, 142-9	3.1	268
69	Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. <i>Behavioural Brain Research</i> , 1997 , 88, 261-74	3.4	608
68	Without LTP the learning circuit is broken. <i>Behavioral and Brain Sciences</i> , 1997 , 20, 616-616	0.9	3
67	The amygdala and fear conditioning: has the nut been cracked?. <i>Neuron</i> , 1996 , 16, 237-40	13.9	327
66	Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: Absence of a temporal gradient <i>Behavioral Neuroscience</i> , 1996 , 110, 718-726	2.1	244

65	N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats <i>Behavioral Neuroscience</i> , 1996 , 110, 1365-1374	2.1	332
64	Effects of handling and context preexposure on the immediate shock deficit. <i>Learning and Behavior</i> , 1995 , 23, 335-339		7
63	Differential inflation with short and long CS-US intervals: Evidence of a nonassociative process in long-delay taste avoidance. <i>Learning and Behavior</i> , 1995 , 23, 154-163		6
62	Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. <i>Neurobiology of Learning and Memory</i> , 1995 , 64, 191-4	3.1	81
61	Ventral and dorsolateral regions of the midbrain periaqueductal gray (PAG) control different stages of defensive behavior: Dorsolateral PAG lesions enhance the defensive freezing produced by massed and immediate shock. <i>Aggressive Behavior</i> , 1995 , 21, 63-77	2.8	50
60	Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues <i>Behavioral Neuroscience</i> , 1994 , 108, 235-240	2.1	130
59	The immediate-shock deficit and postshock analgesia: Implications for the relationship between the analgesic CR and UR. <i>Learning and Behavior</i> , 1994 , 22, 72-76		21
58	Neural organization of the defensive behavior system responsible for fear. <i>Psychonomic Bulletin and Review</i> , 1994 , 1, 429-38	4.1	661
57	Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. <i>Brain Research</i> , 1994 , 661, 25-34	3.7	330
56	Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats <i>Behavioral Neuroscience</i> , 1994 , 108, 44-56	2.1	95
55	NMDA processes mediate anterograde amnesia of contextual fear conditioning induced by hippocampal damage: Immunization against amnesia by context preexposure <i>Behavioral Neuroscience</i> , 1994 , 108, 19-29	2.1	209
54	Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala <i>Behavioral Neuroscience</i> , 1994 , 108, 210-212	2.1	355
53	Water deprivation enhances fear conditioning to contextual, but not discrete, conditional stimuli in rats <i>Behavioral Neuroscience</i> , 1994 , 108, 645-649	2.1	57
52	Naltrexone does not disrupt acquisition or performance of inhibitory conditioning. <i>Bulletin of the Psychonomic Society</i> , 1993 , 31, 591-594		2
51	Associations and Memories: The Role of NMDA Receptors and Long-Term Potentiation. <i>Current Directions in Psychological Science</i> , 1993 , 2, 152-156	6.5	20
50	The development of morphine-induced antinociception in neonatal rats: a comparison of forepaw, hindpaw, and tail retraction from a thermal stimulus. <i>Pharmacology Biochemistry and Behavior</i> , 1993 , 44, 643-9	3.9	26
49	Aversively motivated changes in meal patterns of rats in a closed economy: The effects of shock density. <i>Learning and Behavior</i> , 1993 , 21, 168-175		20
48	Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear <i>Behavioral Neuroscience</i> , 1993 , 107, 1093-1098	2.1	47°

47	The benzodiazepine inverse agonist DMCM as an unconditional stimulus for fear-induced analgesia: Implications for the role of GABAA receptors in fear-related behavior <i>Behavioral Neuroscience</i> , 1992 , 106, 336-344	2.1	42
46	Associative regulation of Pavlovian fear conditioning: Unconditioned stimulus intensity, incentive shifts, and latent inhibition <i>Journal of Experimental Psychology</i> , 1992 , 18, 400-413		53
45	Is there a functional role for vagally mediated pain inhibition?. APS Journal, 1992, 1, 39-41		1
44	Nocturnality as a Defensive Behavior in the Rat: An Analysis in Terms of Selective Association Between Light and Aversive Stimulation. <i>Psychological Record</i> , 1992 , 42, 221-253	1.1	4
43	N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning <i>Behavioral Neuroscience</i> , 1991 , 105, 126-133	2.1	267
42	The Midbrain Periaqueductal Gray as a Coordinator of Action in Response to Fear and Anxiety 1991 , 15	1-173	112
41	Tonic nociception in neonatal rats. <i>Pharmacology Biochemistry and Behavior</i> , 1990 , 36, 859-62	3.9	47
40	Centrally administered opioid antagonists, nor-binaltorphimine, 16-methyl cyprenorphine and MR2266, suppress intake of a sweet solution. <i>Pharmacology Biochemistry and Behavior</i> , 1990 , 35, 69-73	3.9	35
39	Factors governing one-trial contextual conditioning. <i>Learning and Behavior</i> , 1990 , 18, 264-270		365
38	Cats produce analgesia in rats on the tail-flick test: naltrexone sensitivity is determined by the nociceptive test stimulus. <i>Brain Research</i> , 1990 , 533, 91-4	3.7	52
37	Suppression of juvenile social behavior requires antagonism of central opioid systems. <i>Pharmacology Biochemistry and Behavior</i> , 1989 , 33, 697-700	3.9	21
36	Differential second-order aversive conditioning using contextual stimuli. <i>Learning and Behavior</i> , 1989 , 17, 205-212		27
35	[D-Ala2,Leu5,Cys6]enkephalin: short-term agonist effects and long-term antagonism at delta opioid receptors. <i>Peptides</i> , 1989 , 10, 319-26	3.8	26
34	The Adaptive Function of Conditioned Defensive Behavior: An Ecological Approach to Pavlovian Stimulus-Substitution Theory 1989 , 151-166		21
33	The ontogeny of opiate tolerance and withdrawal in infant rats. <i>Pharmacology Biochemistry and Behavior</i> , 1988 , 31, 431-8	3.9	41
32	Peripheral versus intracerebroventricular administration of quaternary naltrexone and the enhancement of Pavlovian conditioning. <i>Brain Research</i> , 1988 , 444, 147-52	3.7	28
31	Changes in feeding and foraging patterns as an antipredator defensive strategy: a laboratory simulation using aversive stimulation in a closed economy. <i>Journal of the Experimental Analysis of Behavior</i> , 1988 , 50, 361-74	2.1	46
30	Conditional analgesia, defensive freezing, and benzodiazepines <i>Behavioral Neuroscience</i> , 1988 , 102, 233-243	2.1	178

(1981-1987)

29	Central and peripheral injection of quaternary antagonist, SR58002C, reduces drinking. <i>Physiology and Behavior</i> , 1987 , 40, 573-5	3.5	5
28	Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. <i>Physiology and Behavior</i> , 1987 , 39, 579-86	3.5	84
27	Effects of naltrexone on learning and performance of conditional fear-induced freezing and opioid analgesia. <i>Physiology and Behavior</i> , 1987 , 39, 501-5	3.5	79
26	Quaternary naltrexone reveals the central mediation of conditional opioid analgesia. <i>Pharmacology Biochemistry and Behavior</i> , 1987 , 27, 529-31	3.9	32
25	Species-specific danger signals, endogenous opioid analgesia, and defensive behavior <i>Journal of Experimental Psychology</i> , 1986 , 12, 301-309		37
24	Associative vs topographical accounts of the immediate shock-freezing deficit in rats: Implications for the response selection rules governing species-specific defensive reactions. <i>Learning and Motivation</i> , 1986 , 17, 16-39	1.3	268
23	Conditioned fear-induced opiate analgesia: a competing motivational state theory of stress analgesia. <i>Annals of the New York Academy of Sciences</i> , 1986 , 467, 40-54	6.5	175
22	Exposure to a cat produces opioid analgesia in rats <i>Behavioral Neuroscience</i> , 1985 , 99, 756-759	2.1	151
21	What is conditioned fear?. <i>Trends in Neurosciences</i> , 1984 , 7, 460-462	13.3	81
20	Opiate modulation of the active and inactive components of the postshock reaction: Parallels between naloxone pretreatment and shock intensity <i>Behavioral Neuroscience</i> , 1984 , 98, 269-277	2.1	51
19	Shock-induced analgesia on the formalin test: Effects of shock severity, naloxone, hypophysectomy, and associative variables <i>Behavioral Neuroscience</i> , 1984 , 98, 79-95	2.1	186
18	Independence and competition in aversive motivation. <i>Behavioral and Brain Sciences</i> , 1982 , 5, 320-323	0.9	4
17	Explicitly unpaired delivery of morphine and the test situation: extinction and retardation of tolerance to the suppressing effects of morphine on locomotor activity. <i>Behavioral and Neural Biology</i> , 1982 , 35, 231-41		63
16	The enhancement and reduction of defensive fighting by naloxone pretreatment. <i>Physiological Psychology</i> , 1982 , 10, 313-316		21
15	Conditioned fear-induced opiate analgesia on the Formalin test: Evidence for two aversive motivational systems. <i>Learning and Motivation</i> , 1982 , 13, 200-221	1.3	154
14	Flavor-flavor associations induce hedonic shifts in taste preference. <i>Learning and Behavior</i> , 1982 , 10, 223-228		104
13	The postshock activity burst. <i>Learning and Behavior</i> , 1982 , 10, 448-454		80
12	Naloxone and Pavlovian fear conditioning. <i>Learning and Motivation</i> , 1981 , 12, 398-419	1.3	94

11	A perceptual-defensive-recuperative model of fear and pain. <i>Behavioral and Brain Sciences</i> , 1980 , 3, 291- 3 05	682
10	PDR - a multi-level model of fear and pain. <i>Behavioral and Brain Sciences</i> , 1980 , 3, 315-323 0.9	6
9	Signaled shock-free periods and preference for signaled shock <i>Journal of Experimental Psychology</i> , 1980 , 6, 65-80	71
8	Naloxone pretreatment enhances shock-elicited aggression. <i>Physiological Psychology</i> , 1980 , 8, 369-371	36
7	Extinction of contextual fear and preference for signaled shock. <i>Bulletin of the Psychonomic Society</i> , 1980 , 16, 458-460	8
6	Conditioned and unconditional components of post-shock freezing. <i>The Pavlovian Journal of Biological Science</i> , 1980 , 15, 177-82	697
5	Naloxone attenuates rat preference for signaled shock. <i>Physiological Psychology</i> , 1979 , 7, 70-74	144
4	Triggering of the endorphin analgesic reaction by a cue previously associated with shock: Reversal by naloxone. <i>Bulletin of the Psychonomic Society</i> , 1979 , 14, 88-90	116
3	Naloxone and shock-elicited freezing in the rat. <i>Journal of Comparative and Physiological Psychology</i> , 1979 , 93, 736-44	322
2	Neurobiological and Neuroethological Perspectives on Fear and Anxiety27-40	6
1	Connectivity characterization of the mouse basolateral amyodalar complex	2