
Kamil KrÃjl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4238268/publications.pdf Version: 2024-02-01

ΚλΜΙΙ ΚΡΑϊ

#	Article	lF	CITATIONS
1	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	2.2	11
2	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	3.5	24
3	Beyond direct neighbourhood effects: higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 2021, 8, nwaa244.	4.6	16
4	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
5	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
6	Supervised Segmentation of Ultra-High-Density Drone Lidar for Large-Area Mapping of Individual Trees. Remote Sensing, 2020, 12, 3260.	1.8	27
7	Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 2019, 22, 245-255.	3.0	92
8	New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surveys in Geophysics, 2019, 40, 959-977.	2.1	82
9	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	1.9	29
10	Driving factors of the growth response of Fagus sylvatica L. to disturbances: A comprehensive study from Central-European old-growth forests. Forest Ecology and Management, 2019, 444, 96-106.	1.4	6
11	Beyond the cones: How crown shape plasticity alters aboveground competition for space and light—Evidence from terrestrial laser scanning. Agricultural and Forest Meteorology, 2019, 264, 188-199.	1.9	26
12	How cyclical and predictable are Central European temperate forest dynamics in terms of development phases?. Journal of Vegetation Science, 2018, 29, 84-97.	1.1	34
13	Where have all the tree diameters grown? Patterns in <i>Fagus sylvatica</i> L. diameter growth on the upper canopy. Ecosphere, 2018, 9, e02508.	1.0	3
14	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	6
15	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	9
16	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
17	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
18	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222

Kamil KrÃil

#	Article	IF	CITATIONS
19	3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE, 2017, 12, e0176871.	1.1	135
20	Breaking through beech: A three-decade rise of sycamore in old-growth European forest. Forest Ecology and Management, 2016, 366, 106-117.	1.4	9
21	Fine-scale patch mosaic of developmental stages in Northeast American secondary temperate forests: the European perspective. European Journal of Forest Research, 2016, 135, 981-996.	1.1	19
22	How do environmental conditions affect the deadwood decomposition of European beech (Fagus) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50

23	Tree spatial patterns of Fagus sylvatica expansion over 37 years. Forest Ecology and Management, 2016, 375, 134-145.	1.4	50
24	The true response of Fagus sylvatica L. to disturbances: A basis for the empirical inference of release criteria for temperate forests. Forest Ecology and Management, 2016, 374, 174-185.	1.4	12
25	Patterns of Fraxinus angustifolia in an alluvial old-growth forest after declines in flooding events. European Journal of Forest Research, 2016, 135, 215-228.	1.1	12
26	Deadwood residence time in alluvial hardwood temperate forests – A key aspect of biodiversity conservation. Forest Ecology and Management, 2015, 357, 33-41.	1.4	30
27	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
28	Application of the Czech Methodology of Biogeographical Landscape Differentiation in Geobiocoenological Concept – Examples from Cuba, Tasmania and Yemen. Journal of Landscape Ecology(Czech Republic), 2015, 8, 51-67.	0.2	5
29	Patch mosaic of developmental stages in central European natural forests along vegetation gradient. Forest Ecology and Management, 2014, 330, 17-28.	1.4	59
30	Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30Âyears. European Journal of Forest Research, 2014, 133, 1015-1028.	1,1	34
31	Spatial variability of general stand characteristics in central European beech-dominated natural stands – Effects of scale. Forest Ecology and Management, 2014, 328, 353-364.	1.4	45
32	Individualâ€based approach to the detection of disturbance history through spatial scales in a natural beechâ€dominated forest. Journal of Vegetation Science, 2013, 24, 1167-1184.	1.1	54
33	Spatiotemporal differences in tree spatial patterns between alluvial hardwood and mountain fir–beech forests: do characteristic patterns exist?. Journal of Vegetation Science, 2013, 24, 1141-1153.	1.1	10
34	Arrangement of terrestrial laser scanner positions for area-wide stem mapping of natural forests. Canadian Journal of Forest Research, 2013, 43, 355-363.	0.8	34
35	Spatial and volume patterns of an unmanaged submontane mixed forest in Central Europe: 160 years of spontaneous dynamics. Forest Ecology and Management, 2011, 262, 873-885.	1.4	49
36	Field maple and hornbeam populations along a 4-m elevation gradient in an alluvial forest. European Journal of Forest Research, 2011, 130, 197-208.	1.1	26

Kamil KrÃil

#	Article	IF	CITATIONS
37	Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method. European Journal of Forest Research, 2010, 129, 339-351.	1.1	60
38	Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling. Forest Ecology and Management, 2010, 260, 2196-2203.	1.4	74
39	The role of tree uprooting in soil formation: A critical literature review. Geoderma, 2010, 157, 65-79.	2.3	116
40	Classification of Current Vegetation Cover and Alpine Treeline Ecotone in the Praděd Reserve (Czech) Tj ETQq0 (0 rgBT / 0.4	Overlock 10 T
41	Natural gap dynamics in a Central European mixed beech—spruce—fir old-growth forest. Ecoscience, 2009, 16, 39-47.	0.6	47

42	Tree layer dynamics of the Cahnov–Soutok near-natural floodplain forest after 33Âyears (1973–2006). European Journal of Forest Research, 2008, 127, 337-345.	1.1	33
43	The first detailed landâ€cover map of Socotra Island by Landsat/ETM+ data. International Journal of Remote Sensing, 2006, 27, 3239-3250	1.3	40