## Kamil KrÃjl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4238268/publications.pdf Version: 2024-02-01



ΚλΜΙΙ ΚΡΑϊ

| #  | Article                                                                                                                                                                                 | IF                  | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
| 1  | <scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global<br>change. Global Change Biology, 2015, 21, 528-549.                               | 4.2                 | 473           |
| 2  | Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.                                                                                         | 2.7                 | 330           |
| 3  | BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.                                                               | 2.7                 | 289           |
| 4  | Plant diversity increases with the strength of negative density dependence at the global scale.<br>Science, 2017, 356, 1389-1392.                                                       | 6.0                 | 222           |
| 5  | 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial<br>LiDAR. PLoS ONE, 2017, 12, e0176871.                                             | 1.1                 | 135           |
| 6  | ForestGEO: Understanding forest diversity and dynamics through a global observatory network.<br>Biological Conservation, 2021, 253, 108907.                                             | 1.9                 | 122           |
| 7  | The role of tree uprooting in soil formation: A critical literature review. Geoderma, 2010, 157, 65-79.                                                                                 | 2.3                 | 116           |
| 8  | Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 2019, 22, 245-255.                                        | 3.0                 | 92            |
| 9  | New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surveys in<br>Geophysics, 2019, 40, 959-977.                                                        | 2.1                 | 82            |
| 10 | Local variability of stand structural features in beech dominated natural forests of Central Europe:<br>Implications for sampling. Forest Ecology and Management, 2010, 260, 2196-2203. | 1.4                 | 74            |
| 11 | Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method. European Journal of Forest Research, 2010, 129, 339-351.      | 1.1                 | 60            |
| 12 | Patch mosaic of developmental stages in central European natural forests along vegetation gradient.<br>Forest Ecology and Management, 2014, 330, 17-28.                                 | 1.4                 | 59            |
| 13 | Individualâ€based approach to the detection of disturbance history through spatial scales in a natural beechâ€dominated forest. Journal of Vegetation Science, 2013, 24, 1167-1184.     | 1.1                 | 54            |
| 14 | Tree spatial patterns of Fagus sylvatica expansion over 37 years. Forest Ecology and Management, 2016,<br>375, 134-145.                                                                 | 1.4                 | 50            |
| 15 | Spatial and volume patterns of an unmanaged submontane mixed forest in Central Europe: 160 years of spontaneous dynamics. Forest Ecology and Management, 2011, 262, 873-885.            | 1.4                 | 49            |
| 16 | Natural gap dynamics in a Central European mixed beech—spruce—fir old-growth forest. Ecoscience, 2009, 16, 39-47.                                                                       | 0.6                 | 47            |
| 17 | How do environmental conditions affect the deadwood decomposition of European beech ( Fagus) Tj ETQq1                                                                                   | 1 0.784314 r<br>1.4 | rgBT_/Overloc |
|    |                                                                                                                                                                                         |                     |               |

<sup>18</sup> Spatial variability of general stand characteristics in central European beech-dominated natural stands – Effects of scale. Forest Ecology and Management, 2014, 328, 353-364.

1.4 45

Kamil KrÃil

| #  | Article                                                                                                                                                                                                  | IF              | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 19 | The first detailed land over map of Socotra Island by Landsat/ETM+ data. International Journal of<br>Remote Sensing, 2006, 27, 3239-3250.                                                                | 1.3             | 40           |
| 20 | Arrangement of terrestrial laser scanner positions for area-wide stem mapping of natural forests.<br>Canadian Journal of Forest Research, 2013, 43, 355-363.                                             | 0.8             | 34           |
| 21 | Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30Âyears.<br>European Journal of Forest Research, 2014, 133, 1015-1028.                                          | 1.1             | 34           |
| 22 | How cyclical and predictable are Central European temperate forest dynamics in terms of development phases?. Journal of Vegetation Science, 2018, 29, 84-97.                                             | 1.1             | 34           |
| 23 | Tree layer dynamics of the Cahnov–Soutok near-natural floodplain forest after 33Âyears (1973–2006).<br>European Journal of Forest Research, 2008, 127, 337-345.                                          | 1.1             | 33           |
| 24 | Deadwood residence time in alluvial hardwood temperate forests – A key aspect of biodiversity conservation. Forest Ecology and Management, 2015, 357, 33-41.                                             | 1.4             | 30           |
| 25 | Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.                                                                                | 1.9             | 29           |
| 26 | Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.                                          | 5.8             | 28           |
| 27 | Supervised Segmentation of Ultra-High-Density Drone Lidar for Large-Area Mapping of Individual Trees.<br>Remote Sensing, 2020, 12, 3260.                                                                 | 1.8             | 27           |
| 28 | Field maple and hornbeam populations along a 4-m elevation gradient in an alluvial forest. European<br>Journal of Forest Research, 2011, 130, 197-208.                                                   | 1.1             | 26           |
| 29 | Beyond the cones: How crown shape plasticity alters aboveground competition for space and<br>light—Evidence from terrestrial laser scanning. Agricultural and Forest Meteorology, 2019, 264,<br>188-199. | 1.9             | 26           |
| 30 | Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.                                                                            | 3.5             | 24           |
| 31 | Fine-scale patch mosaic of developmental stages in Northeast American secondary temperate forests:<br>the European perspective. European Journal of Forest Research, 2016, 135, 981-996.                 | 1.1             | 19           |
| 32 | Beyond direct neighbourhood effects: higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 2021, 8, nwaa244.                                     | 4.6             | 16           |
| 33 | Classification of Current Vegetation Cover and Alpine Treeline Ecotone in the Praděd Reserve (Czech) Tj ETQq1                                                                                            | 1 0,7843<br>0.4 | 14 rgBT /Ove |
| 34 | The true response of Fagus sylvatica L. to disturbances: A basis for the empirical inference of release criteria for temperate forests. Forest Ecology and Management, 2016, 374, 174-185.               | 1.4             | 12           |
| 35 | Patterns of Fraxinus angustifolia in an alluvial old-growth forest after declines in flooding events.<br>European Journal of Forest Research, 2016, 135, 215-228.                                        | 1.1             | 12           |
| 36 | <i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots.<br>Methods in Ecology and Evolution, 2022, 13, 330-338.                                          | 2.2             | 11           |

Kamil KrÃil

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spatiotemporal differences in tree spatial patterns between alluvial hardwood and mountain<br>fir–beech forests: do characteristic patterns exist?. Journal of Vegetation Science, 2013, 24, 1141-1153.                       | 1.1 | 10        |
| 38 | Breaking through beech: A three-decade rise of sycamore in old-growth European forest. Forest<br>Ecology and Management, 2016, 366, 106-117.                                                                                  | 1.4 | 9         |
| 39 | Response to Comment on "Plant diversity increases with the strength of negative density dependence<br>at the global scaleâ€: Science, 2018, 360, .                                                                            | 6.0 | 9         |
| 40 | Response to Comment on "Plant diversity increases with the strength of negative density dependence<br>at the global scale― Science, 2018, 360, .                                                                              | 6.0 | 6         |
| 41 | Driving factors of the growth response of Fagus sylvatica L. to disturbances: A comprehensive study<br>from Central-European old-growth forests. Forest Ecology and Management, 2019, 444, 96-106.                            | 1.4 | 6         |
| 42 | Application of the Czech Methodology of Biogeographical Landscape Differentiation in<br>Geobiocoenological Concept – Examples from Cuba, Tasmania and Yemen. Journal of Landscape<br>Ecology(Czech Republic), 2015, 8, 51-67. | 0.2 | 5         |
| 43 | Where have all the tree diameters grown? Patterns in <i>Fagus sylvatica</i> L. diameter growth on their run to the upper canopy. Ecosphere, 2018, 9, e02508.                                                                  | 1.0 | 3         |