Denis M Medeiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4238265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deficiency of Î ² -carotene oxygenase 2 induces mitochondrial fragmentation and activates the STING-IRF3 pathway in the mouse hypothalamus. Journal of Nutritional Biochemistry, 2021, 88, 108542.	1.9	3
2	\hat{l}^2 -carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radical Biology and Medicine, 2021, 164, 271-284.	1.3	16
3	Ablation of β,β-carotene-9′,10′-oxygenase 2 remodels the hypothalamic metabolome leading to metabolic disorders in mice. Journal of Nutritional Biochemistry, 2017, 46, 74-82.	1.9	18
4	Lack of β, β aroteneâ€9′, 10′â€oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxida stress in mice. Molecular Nutrition and Food Research, 2017, 61, 1600576.	ative 1.5	33
5	Targeted Metabolomics Reveals Abnormal Hepatic Energy Metabolism by Depletion of Î ² -Carotene Oxygenase 2 in Mice. Scientific Reports, 2017, 7, 14624.	1.6	14
6	Perspectives on the Role and Relevance of Copper in Cardiac Disease. Biological Trace Element Research, 2017, 176, 10-19.	1.9	19
7	Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Experimental Biology and Medicine, 2016, 241, 1316-1322.	1.1	49
8	Molecular aspects of β, β-carotene-9′, 10′-oxygenase 2 in carotenoid metabolism and diseases. Experimenta Biology and Medicine, 2016, 241, 1879-1887.	1.1	43
9	Role of the Menkes ATPase in the Absorption of Both Copper and Iron. Journal of Nutrition, 2014, 144, 3-4.	1.3	2
10	Wolfberries potentiate mitophagy and enhance mitochondrial biogenesis leading to prevention of hepatic steatosis in obese mice: The role of AMPâ€activated protein kinase α2 subunit. Molecular Nutrition and Food Research, 2014, 58, 1005-1015.	1.5	25
11	Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Molecular Nutrition and Food Research, 2013, 57, 1158-1169.	1.5	61
12	The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. Journal of Molecular and Cellular Cardiology, 2012, 52, 701-710.	0.9	43
13	The Cardiac Copper Chaperone Proteins Sco1 and CCS are Up-Regulated, but Cox 1 and Cox4 are Down-Regulated, by Copper Deficiency. Biological Trace Element Research, 2011, 143, 368-377.	1.9	14
14	Gastric Bypass and Copper Deficiency: A Possible Overlooked Consequence. Obesity Surgery, 2011, 21, 1482-1483.	1.1	6
15	Wolfberry Supplements Prevent the Development of Hepatic Steatosis. FASEB Journal, 2010, 24, 230.3.	0.2	0
16	Mitochondrial and sarcoplasmic protein changes in hearts from copper-deficient rats: up-regulation of PGC-1α transcript and protein as a cause for mitochondrial biogenesis in copper deficiency. Journal of Nutritional Biochemistry, 2009, 20, 823-830.	1.9	14
17	Dietary Supplements Protect Retinal Pigment Epithelial Cells From Hyperglycemic Damage. FASEB Journal, 2009, 23, 230.6.	0.2	0
18	Dietary copper deficiency upâ€regulates selected cardiac copper chaperone proteins. FASEB Journal, 2009, 23, 727.2.	0.2	0

#	Article	IF	CITATIONS
19	Assessing mitochondria biogenesis. Methods, 2008, 46, 288-294.	1.9	113
20	Transcriptional coactivators PGC-1Î \pm and PGC-lÎ ² control overlapping programs required for perinatal maturation of the heart. Genes and Development, 2008, 22, 1948-1961.	2.7	280
21	Insulin-Resistant Heart Exhibits a Mitochondrial Biogenic Response Driven by the Peroxisome Proliferator-Activated Receptor-α/PGC-1α Gene Regulatory Pathway. Circulation, 2007, 115, 909-917.	1.6	199
22	Feeding enriched omega-3 fatty acid beef to rats increases omega-3 fatty acid content of heart and liver membranes and decreases serum vascular cell adhesion molecule-1 and cholesterol levels. Nutrition Research, 2007, 27, 295-299.	1.3	15
23	Differential expression of genes involved with apoptosis, cell cycle, connective tissue proteins, fuel substrate utilization, inflammation and mitochondrial biogenesis in copper-deficient rat hearts: implication of a role for Nfîºb1. Journal of Nutritional Biochemistry, 2007, 18, 719-726.	1.9	7
24	PGC1â€Î± transcript and protein levels are increased in copper deficient rat hearts. FASEB Journal, 2007, 21,	0.2	0
25	Favorable health effects from the feeding of beef from flaxâ€fed cattle to rats. FASEB Journal, 2006, 20, A1024.	0.2	3
26	Copper Deficiency and Mitochondrial Biogenesis: The role of transcriptional factors PPARâ€alpha, PGCâ€1 alpha and NFkb1. FASEB Journal, 2006, 20, A553.	0.2	3
27	Mitochondrial Membrane Potential Is Reduced in Copper-Deficient C ₂ C ₁₂ Cells in the Absence of Apoptosis. Biological Trace Element Research, 2005, 106, 051-064.	1.9	15
28	Marginal copper intakes over a protracted period in genetically and nongenetically susceptible heart disease rats disturb electrocardiograms and enhance lipid deposition. Nutrition Research, 2005, 25, 663-672.	1.3	9
29	PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis. PLoS Biology, 2005, 3, e101.	2.6	817
30	Iron Deficiency Negatively Affects Vertebrae and Femurs of Rats Independently of Energy Intake and Body Weight. Journal of Nutrition, 2004, 134, 3061-3067.	1.3	87
31	Cardiac-Specific Induction of the Transcriptional Coactivator Peroxisome Proliferator-Activated Receptor 13 Coactivator-11± Promotes Mitochondrial Biogenesis and Reversible Cardiomyopathy in a Developmental Stage-Dependent Manner. Circulation Research, 2004, 94, 525-533.	2.0	352
32	Plasma phenylalanine concentrations are associated with hepatic iron content in a murine model for phenylketonuria. Molecular Genetics and Metabolism, 2004, 82, 76-82.	0.5	8
33	Stimulation by carnitine of branched-chain α-keto acid dehydrogenase in intact heart mitochondria of rats. Nutrition Research, 2004, 24, 647-657.	1.3	1
34	Bone Morphology, Strength and Density Are Compromised in Iron-Deficient Rats and Exacerbated by Calcium Restriction. Journal of Nutrition, 2002, 132, 3135-3141.	1.3	80
35	Ontogeny of Enhanced Decorin Levels and Distribution Within Myocardium of Failing Hearts. Connective Tissue Research, 2002, 43, 32-43.	1.1	13
36	Elevated plasma phenylalanine concentrations may adversely affect bone status of phenylketonuric mice. Journal of Inherited Metabolic Disease, 2002, 25, 347-361.	1.7	25

#	Article	IF	CITATIONS
37	Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. Journal of Bioenergetics and Biomembranes, 2002, 34, 389-395.	1.0	49
38	Impaired cardiac mitochondrial membrane potential and respiration in copper-deficient rats. Journal of Bioenergetics and Biomembranes, 2002, 34, 397-406.	1.0	30
39	Ontogeny of Enhanced Decorin Levels and Distribution Within Myocardium of Failing Hearts. Connective Tissue Research, 2002, 43, 32-43.	1.1	4
40	Ontogeny of enhanced decorin levels and distribution within myocardium of failing hearts. Connective Tissue Research, 2002, 43, 32-43.	1.1	2
41	Lutein, Zeaxanthin, and Age-Related Macular Degeneration. Journal of Nutraceuticals, Functional and Medical Foods, 2001, 3, 79-85.	0.5	5
42	Nuclear Respiratory Factors 1 and 2 Are Upregulated in Hearts from Copper-Deficient Rats. Biological Trace Element Research, 2001, 83, 57-68.	1.9	12
43	Long-term marginal copper intake by rats: Effects on copper enzyme activities and responses to dimethylhydrazine. Journal of Trace Elements in Experimental Medicine, 2000, 13, 359-365.	0.8	1
44	Mitochondrial Transcription Factor A Is Increased but Expression of ATP Synthase β Subunit and Medium-Chain Acyl-CoA Dehydrogenase Genes Are Decreased in Hearts of Copper-Deficient Rats. Journal of Nutrition, 2000, 130, 2143-2150.	1.3	17
45	Evaluation of Capsaicin's Use in Analgesic Medicine. Journal of Nutraceuticals, Functional and Medical Foods, 2000, 3, 39-46.	0.5	3
46	Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. Journal of Clinical Investigation, 2000, 106, 847-856.	3.9	1,120
47	Marginal copper and high fat diet produce alterations in electrocardiograms and cardiac ultrastructure in male rats. Nutrition, 1999, 15, 890-898.	1.1	9
48	Heart Murmurs, Valvular Regurgitation and Electrical Disturbances in Copper-Deficient Genetically Hypertensive, Hypertrophic Cardiomyopathic Rats. Journal of the American College of Nutrition, 1999, 18, 51-60.	1.1	6
49	Cardiac hypertrophy in copper-deficient rats is owing to increased mitochondria. Biological Trace Element Research, 1998, 64, 175-184.	1.9	21
50	Dietary Iron Deficiency Results in Cardiac Eccentric Hypertrophy in Rats. Experimental Biology and Medicine, 1998, 218, 370-375.	1.1	33
51	Newer Findings on a Unified Perspective of Copper Restriction and Cardiomyopathy. Experimental Biology and Medicine, 1997, 215, 299-313.	1.1	55
52	Decreased nuclear encoded subunits of cytochrome c oxidase and increased copper, zinc–superoxide dismutase activity are found in cardiomyopathic human hearts. International Journal of Cardiology, 1997, 62, 259-267.	0.8	7
53	Cardiac Nuclear Encoded Cytochrome c Oxidase Subunits Are Decreased With Copper Restriction But Not Iron Restriction: Gene Expression, Protein Synthesis and Heat Shock Protein Aspects. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 117, 77-87.	0.7	36
54	Femurs from rats fed diets deficient in copper or iron have decreased mechanical strength and altered mineral composition. Journal of Trace Elements in Experimental Medicine, 1997, 10, 197-203.	0.8	51

#	Article	IF	CITATIONS
55	Diet fat and fiber knowledge, beliefs and practices are minimally influenced by health status. Nutrition Research, 1996, 16, 751-758.	1.3	8
56	Deliberations and Evaluations of the Approaches, Endpoints and Paradigms for Dietary Recommendations about Copper. Journal of Nutrition, 1996, 126, 2419S-2426S.	1.3	38
57	Aspects of Cardiomyopathy Are Exacerbated by Elevated Dietary Fat in Copper-Restricted Rats. Journal of Nutrition, 1996, 126, 807-816.	1.3	25
58	Aspects of cardiomyopathy in Copper-deficient pigs. Biological Trace Element Research, 1996, 55, 55-70.	1.9	20
59	Cardiac levels of fibronectin, laminin, isomyosins, and cytochrome c oxidase of weanling rats are more vulnerable to copper deficiency than those of postweanling rats. Journal of Nutritional Biochemistry, 1995, 6, 385-391.	1.9	19
60	Marginal Copper-Restricted Diets Produce Altered Cardiac Ultrastructure in the Rat. Experimental Biology and Medicine, 1995, 210, 43-49.	1.1	43
61	Decreased body mass in copper-deficient rats is due to decreased food consumption and not food utilization. Nutrition Research, 1995, 15, 977-982.	1.3	3
62	Copper deficiency alters isomyosin types and levels of laminin, fibronectin and cytochrome c oxidase subunits from rat hearts. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 111, 61-67.	0.7	15
63	Low Levels of ATP Synthase and Cytochrome c Oxidase Subunit Peptide from Hearts of Copper-Deficient Rats Are Not Altered by the Administration of Dimethyl Sulfoxide. Journal of Nutrition, 1994, 124, 789-803.	1.3	35
64	Comparative aspects of cardiac ultrastructure, morphometry, and electrocardiography of hearts from rats fed restricted dietary copper and selenium. Biological Trace Element Research, 1994, 46, 51-66.	1.9	24
65	Decreased high density lipoprotein cholesterol and apoprotein A-I in plasma and ultrastructural pathology in cardiac muscle of young pigs fed a diet high in zinc. Nutrition Research, 1994, 14, 1227-1239.	1.3	21
66	Cardiac nonmyofibrillar proteins in copper-deficient rats. Biological Trace Element Research, 1993, 36, 271-282.	1.9	24
67	Submaximal, aerobic exercise training exacerbates the cardiomyopathy of postweanling Cu-depleted rats. Biological Trace Element Research, 1993, 38, 251-272.	1.9	13
68	Cardiac nucleotide levels and mitochondrial respiration in copper-deficient rats. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 104, 163-168.	0.7	25
69	A Unified Perspective on Copper Deficiency and Cardiomyopathy. Experimental Biology and Medicine, 1993, 203, 262-273.	1.1	75
70	Copper deficiency alters collagen types and covalent cross-linking in swine myocardium and cardiac valves. American Journal of Physiology - Heart and Circulatory Physiology, 1993, 264, H2154-H2161.	1.5	13
71	Electrocardiographic Activity and Cardiac Function in Copper-Restricted Rats. Experimental Biology and Medicine, 1992, 200, 78-84.	1.1	19
72	Comparison of Î ² -aminoproprionitrile administration with copper-deficiency signs in the rat. Nutrition Research, 1992, 12, 1555-1559.	1.3	4

#	Article	lF	CITATIONS
73	Low and marginal copper intake by postweanling rats: Effects on copper status and resistance to carbon tetrachloride hepatotoxicity. Metabolism: Clinical and Experimental, 1992, 41, 1122-1124.	1.5	3
74	Cardiac Ultrastructural and Electrophysiological Abnormalities in Postweanling Copper-Restricted and Copper-Repleted Rats in the Absence of Hypertrophy. Journal of Nutrition, 1992, 122, 1566-1575.	1.3	45
75	Morphometric analysis of myocardium from copper-deficient pigs. Nutrition Research, 1991, 11, 1439-1450.	1.3	9
76	Copper Deficiency in a Genetically Hypertensive Cardiomyopathic Rat: Electrocardiogram, Functional and Ultrastructural Aspects. Journal of Nutrition, 1991, 121, 1026-1034.	1.3	36
77	Myofibrillar, Mitochondrial and Valvular Morphological Alterations in Cardiac Hypertrophy among Copper-Deficient Rats. Journal of Nutrition, 1991, 121, 815-824.	1.3	92
78	Copper supplementation effects on indicators of copper status and serum cholesterol in adult males. Biological Trace Element Research, 1991, 30, 19-35.	1.9	27
79	Myofibrillar and Nonmyofibrillar Myocardial Proteins of Copper-Deficient Rats. Journal of Nutrition, 1989, 119, 1683-1690.	1.3	27
80	Vitamin and mineral supplementation practices of adults in seven western states. Journal of the American Dietetic Association, 1989, 89, 383-6.	1.3	12
81	Effect of Altitude and Management System on the Iron Content of Beef. Journal of Food Science, 1988, 53, 37-39.	1.5	1
82	Effect of High Altitude on Copper and Zinc Content of Beef. Journal of Food Science, 1988, 53, 1222-1223.	1.5	2
83	Fatty Acids of Liver, Cardiac and Adipose Tissues from Copper-Deficient Rats. Journal of Nutrition, 1988, 118, 480-486.	1.3	13
84	Zinc supplements and serum lipids in young adult white males. American Journal of Clinical Nutrition, 1988, 47, 970-975.	2.2	88
85	Hypertension in the Wistar-Kyoto rat as a result of post-weaning copper restriction. Nutrition Research, 1987, 7, 231-235.	1.3	30
86	Failure of oral zinc supplementation to alter hair zinc levels among healthy human males. Nutrition Research, 1987, 7, 1109-1115.	1.3	7
87	Aluminum toxicity and behavior in the weanling Long-Evans rat. Bulletin of the Psychonomic Society, 1987, 25, 129-132.	0.2	14
88	Hair minerals and diet of Prader-Willi syndrome youth. Journal of Autism and Developmental Disorders, 1987, 17, 365-374.	1.7	4
89	Aluminum ingestion and behavior in the Long-Evans rat. Physiology and Behavior, 1986, 36, 63-67.	1.0	40
90	Blood pressure in young adults as influenced by diet, anthropometrics, calcium status, and serum lipids. Nutrition Research, 1986, 6, 359-368.	1.3	1

#	Article	IF	CITATIONS
91	Proximate Composition and Sensory Evaluation of a Sausage Snack Ball Made from Catfish and from Pork. Journal of Food Science, 1986, 51, 292-294.	1.5	5
92	Excess diet copper increases systolic blood pressure in rats. Biological Trace Element Research, 1986, 9, 15-24.	1.9	15
93	Proximate Composition, Mineral Content, and Fatty Acids of Catfish (Ictalurus punctatus, Rafinesque) for Different Seasons and Cooking Methods. Journal of Food Science, 1985, 50, 585-588.	1.5	70
94	Blood pressure and hair cadmium, lead, copper, and zinc concentrations in Mississippi adolescents. Bulletin of Environmental Contamination and Toxicology, 1985, 34, 163-169.	1.3	13
95	Effect of copper deficiency and Sodium intake upon liver lipid and mineral composition in the rat. Biological Trace Element Research, 1984, 6, 423-429.	1.9	15
96	Elevation of cadmium, lead, and Zinc in the hair of adult black female hypertensives. Bulletin of Environmental Contamination and Toxicology, 1984, 32, 525-532.	1.3	13
97	Long term effects of dietary copper and sodium upon blood pressure in the long-evans rat. Nutrition Research, 1984, 4, 305-314.	1.3	34
98	Blood pressure in young adults as influenced by copper and zinc intake. Biological Trace Element Research, 1983, 5, 165-174.	1.9	3
99	Postweaning copper restriction and behavior in the Long-Evans rat. Pharmacology Biochemistry and Behavior, 1983, 19, 1041-1044.	1.3	3
100	The association of selected hair minerals and anthropometric factors with blood pressure in a normotensive adult population. Nutrition Research, 1983, 3, 51-60.	1.3	8
101	Copper and sodium concentration in rat hair as related to dietary intake. Nutrition Research, 1983, 3, 923-928.	1.3	2
102	Blood pressure in young adults as associated with dietary habits, body conformation, and hair element concentrations. Nutrition Research, 1982, 2, 455-466.	1.3	6
103	Relationship of blood pressures with hair mineral concentrations in South Carolina adolescents. Bulletin of Environmental Contamination and Toxicology, 1982, 29, 190-195.	1.3	2
104	Conversion of laboratory stock CH3 203HgCl to inorganic203Hg. Bulletin of Environmental Contamination and Toxicology, 1981, 27-27, 467-469.	1.3	3
105	A possible physiological uptake mechanism of methylmercury by the marine bloodworm (Glycera) Tj ETQq1 1 0.	784314 rg	BT/Overlock