Mohamed A Marzouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4238138/publications.pdf

Version: 2024-02-01

79 papers

1,405 citations

³⁹⁴²⁸⁶
19
h-index

395590 33 g-index

79 all docs

79 docs citations

79 times ranked 867 citing authors

#	Article	IF	CITATIONS
1	Gamma rays interaction with bismuth borate glasses doped by transition metal ions. Journal of Materials Science, 2011, 46, 5140-5152.	1.7	93
2	UV–visible and infrared absorption spectra of gamma irradiated V2O5-doped in sodium phosphate, lead phosphate, zinc phosphate glasses: A comparative study. Journal of Non-Crystalline Solids, 2011, 357, 1027-1036.	1.5	92
3	Comparative spectral and shielding studies of binary borate glasses with the heavy metal oxides SrO, CdO, BaO, PbO or Bi2O3 before and after gamma irradiation. Journal of Non-Crystalline Solids, 2014, 387, 155-160.	1.5	87
4	Optical characterization of some rare earth ions doped bismuth borate glasses and effect of gamma irradiation. Journal of Molecular Structure, 2012, 1019, 80-90.	1.8	64
5	Ultraviolet, visible, ESR, and infrared spectroscopic studies of CeO2-doped lithium phosphate glasses and effect of gamma irradiation. Journal of Molecular Structure, 2011, 997, 94-102.	1.8	59
6	Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses. Journal of Materials Research and Technology, 2016, 5, 226-233.	2.6	58
7	Ultraviolet and infrared absorption spectra of Cr2O3 doped – Sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: A comparative study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 658-667.	2.0	56
8	The Effects of Bi2O3 on Optical, FTIR and Thermal Properties of SrO-B2O3 Glasses. Silicon, 2016, 8, 123-131.	1.8	44
9	Photoluminescence and spectral performance of manganese ions in zinc phosphate and barium phosphate host glasses. Journal of Non-Crystalline Solids, 2017, 458, 1-14.	1.5	39
10	Optical, structural and thermal properties of sodium metaphosphate glasses containing Bi 2 O 3 with interactions of gamma rays. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 454-460.	2.0	32
11	Spectroscopic Studies and Luminescence Spectra of Dy2O3 Doped Lead Phosphate Glasses. Silicon, 2012, 4, 221-227.	1.8	27
12	Optical and crystallization studies of titanium dioxide doped sodium and potassium silicate glasses. Journal of Molecular Structure, 2016, 1121, 54-59.	1.8	27
13	Comparative optical, FTIR and photoluminescence spectral analysis of copper ions in BaO–B2O3, SrO–B2O3 or Bi2O3– B2O3 glasses and impact of gamma irradiation. Journal of Luminescence, 2020, 223, 117242.	1.5	26
14	Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation. Journal of Luminescence, 2015, 166, 295-303.	1.5	25
15	Optical and FT Infrared Absorption Spectra of 3d Transition Metal Ions Doped in NaF-CaF ₂ -B ₂ O ₃ Glass and Effects of Gamma Irradiation. Journal of Solid State Physics, 2014, 2014, 1-8.	0.2	23
16	Optical Properties and Effect of Gamma Irradiation on Bismuth Silicate Glasses Containing SrO, BaO or PbO. Silicon, 2013, 5, 283-295.	1.8	22
17	Bismuth silicate glass as host media for some selected rare-earth ions and effects of gamma irradiation. Philosophical Magazine, 2013, 93, 2465-2484.	0.7	21
18	Effect of P2O5 and MnO2 on crystallization of magnetic glass ceramics. Journal of Advanced Research, 2014, 5, 543-550.	4.4	20

#	Article	IF	CITATIONS
19	Optical, FT infrared and photoluminescence spectra of CeO 2 – doped Na 2 O – ZnO – B 2 O 3 host glass and effects of gamma irradiation. Journal of Non-Crystalline Solids, 2018, 485, 14-23.	1.5	20
20	Crystallization and photoluminescent properties of Eu, Gd, Sm, Nd co-doped SrAl2B2O7 nanocrystals phosphors prepared by glass-ceramic technique. Journal of Luminescence, 2019, 205, 248-257.	1.5	20
21	In Vitro Bioactivity Behavior of Some Borophosphate Glasses Containing Dopant of ZnO, CuO or SrO Together with their Glass-Ceramic Derivatives and their Antimicrobial Activity. Silicon, 2019, 11, 197-208.	1.8	20
22	Gamma irradiation and crystallization effects on the photoluminescence properties of soda lime fluorophosphates host glass activated with Ce4+, Dy3+ or Pr3+ ions. Radiation Physics and Chemistry, 2020, 174, 108893.	1.4	20
23	Magnetic properties of nanoparticles glass–ceramic rich with copper ions. Journal of Non-Crystalline Solids, 2011, 357, 3888-3896.	1.5	19
24	Structure–property correlations in the SiO2–PbO–Bi2O3 glasses. Journal of Materials Science: Materials in Electronics, 2012, 23, 1022-1030.	1.1	19
25	Optical and structural properties of WO3-doped silicophosphate glasses for gamma-ray applications. Journal of Molecular Structure, 2014, 1056-1057, 227-232.	1.8	19
26	Influence of vanadium addition on the optical and photoluminescence properties of borate glasses and their glass–ceramic derivatives. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	19
27	Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction. Indian Journal of Physics, 2016, 90, 781-791.	0.9	17
28	Glass Former Effects on Photoluminescence and Optical Properties of Some Heavy Metal Oxide Glasses Doped with Transition Metal Ions. Journal of Applied Spectroscopy, 2017, 84, 162-169.	0.3	17
29	Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+–doped soda lime phosphate glasses. Journal of Molecular Structure, 2018, 1157, 341-347.	1.8	17
30	Spectroscopic properties of gamma irradiated TiO2 doped lithium phosphate glasses. Indian Journal of Physics, 2013, 87, 39-47.	0.9	16
31	Investigation of ZnO-P2O5 Glasses Containing Variable Bi2O3 Contents Through Combined Optical, Structural, Crystallization Analysis and Interactions with Gamma Rays. Silicon, 2018, 10, 615-625.	1.8	16
32	UV–visible, infrared absorption spectra of undoped and TiO ₂ -doped lead phosphate glasses and the effect of gamma irradiation. Radiation Effects and Defects in Solids, 2012, 167, 256-267.	0.4	15
33	Magnetic glass ceramics for sustained 5-fluorouracil delivery: Characterization and evaluation of drug release kinetics. Materials Science and Engineering C, 2014, 44, 293-309.	3.8	15
34	Structural Characteristics and Electrical Conductivity of Vanadium-doped lithium Ultraphosphate Glasses. Silicon, 2017, 9, 403-410.	1.8	15
35	Collective Optical, FTIR, and Photoluminescence Spectra of CeO ₂ and/or Sm ₂ O ₃ -Doped Na ₂ Oâ€"ZnOâ€"P ₂ O ₅ Glasses. International Journal of Optics, 2019, 2019, 1-11.	0.6	15
36	Preparation and characterization of mica glass-ceramics as hydrogen storage materials. International Journal of Hydrogen Energy, 2017, 42, 6829-6839.	3.8	14

#	Article	IF	CITATIONS
37	Study on the reducing effect of \hat{l}^3 -irradiation on Sm3+ doped LiAl fluorophosphate glasses through optical, structural and luminescence analysis. Journal of Materials Science: Materials in Electronics, 2018, 29, 1399-1411.	1.1	14
38	UV-visible and infrared absorption spectra of Bi2O3 in lithium phosphate glasses and effect of gamma irradiation. Applied Physics A: Materials Science and Processing, 2014, 115, 903-912.	1.1	13
39	Sol–gel synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped and Bi–Gd-codoped hybrid organo-silica glasses. Journal of Materials Science: Materials in Electronics, 2015, 26, 2363-2373.	1.1	13
40	Correlation between luminescence and crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 13101-13111.	1.1	13
41	Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses. Journal of Materials Science: Materials in Electronics, 2017, 28, 15480-15487.	1.1	13
42	Gamma Irradiation Effect on Structural and Spectral Properties of CeO2, Nd2O3, Gd2O3 or Dy2O3 – Doped Strontium Borate Glass. Silicon, 2018, 10, 29-37.	1.8	13
43	Optical band gap and structural study on GeO2- and Y2O3-doped barium aluminoborate glasses. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	12
44	Induced defects by gamma irradiation doses on the structure and optical behavior of undoped and TiO2-, Cr2O3-, or MnO-doped heavy metal borate glasses. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	12
45	Spectral properties and shielding behavior of gamma irradiated MoO3-doped silicophosphate glasses. Physica B: Condensed Matter, 2013, 429, 57-62.	1.3	10
46	Photoluminescence behavior of MO3-B2O3-CeO2-Bi2O3 (M = Mo or W) glasses and their counterparts nano-glass-ceramics. Ceramics International, 2018, 44, 21800-21809.	2.3	10
47	Effect of MoO3, MnO2 or mixed dopants on the spectral properties and crystallization behavior of sodium phosphate glasses containing either MgO or MgF2. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	10
48	Luminescence efficiency growth in wide band gap semiconducting Bi2O3 doped Cd0.4Pb0.1B0.5 glasses and effect of \hat{I}^3 -irradiation. Journal of Molecular Structure, 2014, 1076, 576-582.	1.8	9
49	Bifunctional ferromagnetic Eu-Gd-Bi-codoped hybrid organo-silica red emitting phosphors synthesized by a modified Pechini sol-gel method. Materials Chemistry and Physics, 2017, 194, 198-205.	2.0	9
50	Integration Between Optical and Structural Behavior of Heavy Metal Oxide Glasses Doped with Multiple Glass Formers. Silicon, 2018, 10, 21-28.	1.8	9
51	Optical and FTIR Absorption Spectra of CeO2 – Doped Cadmium Borate Glasses and Effects of Gamma Irradiation. Silicon, 2017, 9, 105-110.	1.8	8
52	Luminescent, semiconducting, thermal, and structural performance of Ho3+-doped lithium borate glasses with CaF2 or MgF2. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
53	In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
54	Optical, FTIR and ESR Spectral Investigations of Tungsten Ions in Barium Phosphate Host Glass and Effects of Gamma Irradiation. Silicon, 2018, 10, 959-965.	1.8	7

#	Article	IF	Citations
55	Crystallization and spectroscopic characterizations of binary SrO-B2O3 glasses doped with LiF, NaF, CaF2, or TiO2. Journal of the Australian Ceramic Society, 2019, 55, 1039-1049.	1.1	7
56	Structure characterization and photoluminescence of sol-gel synthesized Ag-Dy-codoped silica phosphor. Journal of Non-Crystalline Solids, 2019, 505, 292-300.	1.5	7
57	In vitro bioactivity of silicophosphate glasses doped with ZnO, SrO or CuO. Journal of Theoretical and Applied Physics, 2020, 14, 159-169.	1.4	6
58	Efficiency of decolorizing agents in the production of colorless commercial glasses from municipal glass cullet wastes. Glass Physics and Chemistry, 2010, 36, 190-198.	0.2	5
59	In Vitro Evaluation of Some Types of Ferrimagnetic Glass Ceramics. International Journal of Biomaterials, 2014, 2014, 1-10.	1.1	5
60	Photoluminescence of sol–gel synthesized transparent amorphous semiconducting La- and Sm-codoped organo-silicate hybrid material. Journal of Materials Science: Materials in Electronics, 2012, 23, 2293-2300.	1.1	4
61	Optical characterization of heavy metal non-conventional binary PbO–ZnO glasses. Applied Physics A: Materials Science and Processing, 2014, 116, 359-364.	1.1	4
62	Spectroscopic Studies on Nano-Single Crystal BiVO4 Glass Ceramic as Dye Degradation for Wastewater Purification. Silicon, 2018, 10, 509-517.	1.8	4
63	Heavy metal oxide glass responses for white light emission. Journal of Materials Science: Materials in Electronics, 2020, 31, 14502-14511.	1.1	4
64	Tunable blue and green emissions of sol–gel synthesized transparent nano-willemite codoped with nano-pyroxmangite and dysprosium. Nano Structures Nano Objects, 2021, 26, 100685.	1.9	4
65	Structure, optical and ferromagnetic properties of Zn1â°'xâ°'yMnxCryO nanoparticles diluted magnetic semiconductors synthesized by citrate solâ€"gel method. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	4
66	Development and characterization of magnetic glass-ceramic: Correlation between phosphate and borate matrices and 5-fluorouracil delivery. Journal of Drug Delivery Science and Technology, 2017, 38, 107-115.	1.4	3
67	Photoluminescence, optical and structural properties of Pr3+-doped fluorophosphate glasses and their induced defects by gamma irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 10561-10572.	1.1	3
68	Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing. Journal of Luminescence, 2019, 216, 116743.	1.5	3
69	Reddish orange phosphorescence of some types of zinc borosilicate glasses activated with Mn2+ and/or Sm3+. Journal of Materials Science: Materials in Electronics, 2019, 30, 18234-18245.	1.1	3
70	Bioactivity behavior of Ag2O or CuO doped in glass systems of Na2O–CaF2–P2O5 and Na2O–CaO–P2O5 and their glass–ceramic derivatives assessed by FTIR, X-ray diffraction and SEM measurements. SN Applied Sciences, 2019, 1, 1.	5 1.5	3
71	Investigation of photoluminescence and spectroscopic properties of Sm3+-doped heavy phosphate glasses before and after gamma irradiation. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3

Spectral and Luminescence Properties of Manganese-Ion-Doped Binary Lithium Fluoride-Phosphate (50) Tj ETQq0 0,0 rgBT /Oyerlock 10

#	Article	IF	CITATIONS
73	Enhancing the Blue Emission of a Borogermanate Glass System (B2O3, GeO2) via Doping with Copper and Europium Cations. Journal of Electronic Materials, 2022, 51, 3684-3692.	1.0	3
74	Antimicrobial activity and FTIR spectral properties of some phosphate glasses and glass–ceramics from the system P2O5–NaF–CaF2 and effects of dopants. SN Applied Sciences, 2019, 1, 1.	1.5	2
75	Gamma Irradiation Shielding Responses of Zinc Cadmium Phosphate Glasses Co-Doped with 3d Transition Metal Ions Assessed Through FTIR and Spectral Analysis. Journal of Electronic Materials, 0, , 1.	1.0	2
76	Crystallization effects on the photoluminescence efficiency of SrO-B2O3 glass activated by W6+, Eu3+, Dy3+ or Pr3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121079.	2.0	2
77	A 1.2-V 200nW fourth order switched capacitor band pass filter for implantable cardiac pacemaker. , 2010, , .		1
78	Comparative Evaluation of Vanadium Ions in Na2O-CaO-P2O5 and Na2O-CaF2-P2O5 Glasses by Spectroscopic Analysis and Effects of Gamma-Rays Interaction. Silicon, 2019, 11, 15-23.	1.8	1
79	Photoluminescence behavior of nano-structured sol-gel prepared zinc oxide activated with manganese and/or chromium ions. Journal of Materials Science: Materials in Electronics, 2021, 32, 15491-15497.	1.1	1