Heidrun Wabnitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4237618/publications.pdf

Version: 2024-02-01

361413 2,382 34 20 citations h-index papers

31 g-index 34 34 34 1554 docs citations times ranked citing authors all docs

434195

#	Article	IF	CITATIONS
1	The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neurolmage, 2012, 61, 70-81.	4.2	445
2	Development of a time-domain optical mammograph and first in vivo applications. Applied Optics, 1999, 38, 2927.	2.1	256
3	Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Applied Optics, 2004, 43, 3037.	2.1	240
4	Performance assessment of photon migration instruments: the MEDPHOT protocol. Applied Optics, 2005, 44, 2104.	2.1	185
5	Best practices for fNIRS publications. Neurophotonics, 2021, 8, 012101.	3.3	142
6	Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons. Applied Optics, 2003, 42, 5785.	2.1	121
7	M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring. IEEE Transactions on Biomedical Engineering, 2017, 64, 1199-1210.	4.2	109
8	Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients. Physics in Medicine and Biology, 2005, 50, 2429-2449.	3.0	103
9	Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. Journal of Biomedical Optics, 2014, 19, 086010.	2.6	101
10	Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media. Journal of Biomedical Optics, 2003, 8, 512.	2.6	90
11	Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. Journal of Biomedical Optics, 2014, 19, 086012.	2.6	85
12	Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain. Advances in Experimental Medicine and Biology, 2010, 662, 143-148.	1.6	55
13	Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy. NeuroImage, 2008, 39, 979-986.	4.2	52
14	Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke. Journal of Biomedical Optics, 2010, 15, 061708.	2.6	51
15	Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. Journal of Biomedical Optics, 2015, 20, 121304.	2.6	45
16	Phantoms for diffuse optical imaging based on totally absorbing objects, part 1: basic concepts. Journal of Biomedical Optics, 2013, 18, 066014.	2.6	41
17	Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation. Journal of Biomedical Optics, 2014, 19, 076011.	2.6	40
18	Fluorescenceâ€guided surgery and intervention — An <scp>AAPM</scp> emerging technology blue paper. Medical Physics, 2018, 45, 2681-2688.	3.0	29

#	Article	IF	CITATIONS
19	Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model. Journal of Biomedical Optics, 2012, 17, 057005.	2.6	26
20	Depth-selective data analysis for time-domain fNIRS: moments vs. time windows. Biomedical Optics Express, 2020, 11, 4224.	2.9	25
21	Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements. Journal of Biomedical Optics, 2015, 20, 115001.	2.6	21
22	A time-domain NIR brain imager applied in functional stimulation experiments. , 2005, , .		20
23	Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. Review of Scientific Instruments, 2016, 87, 035118.	1.3	20
24	Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nature Biomedical Engineering, 2022, 6, 541-558.	22.5	20
25	Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement. Biomedical Optics Express, 2014, 5, 1465.	2.9	17
26	Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio. Biomedical Optics Express, 2020, 11, 4348.	2.9	9
27	Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. Journal of Biomedical Optics, 2022, 27, .	2.6	9
28	Space-enhanced time-domain diffuse optics for determination of tissue optical properties in two-layered structures. Biomedical Optics Express, 2020, 11, 6570.	2.9	8
29	Diffuse near-infrared imaging of tissue with picosecond time resolution. Biomedizinische Technik, 2018, 63, 511-518.	0.8	4
30	Spatially-enhanced time-domain NIRS for accurate determination of tissue optical properties. Optics Express, 2019, 27, 26415.	3.4	4
31	Implementation of the extended Kalman filter for determining the optical and geometrical properties of turbid layered media by time-resolved single distance measurements. Biomedical Optics Express, 2020, 11, 251.	2.9	4
32	Time-Domain Diffuse Optical Imaging of Tissue by Non-contact Scanning. Springer Series in Chemical Physics, 2015, , 561-585.	0.2	2
33	The BITMAP exercise: a multi-laboratory performance assessment campaign of diffuse optical instrumentation., 2019,,.		2
34	Update on AAPM task group 311: guidance for technical performance evaluation for fluorescence guided surgery systems (Conference Presentation). , 2020, , .		1