Cyril Caminade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4237537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oceanic Influence on Seasonal Malaria Incidence in West Africa. Weather, Climate, and Society, 2022, 14, 287-302.	0.5	3
2	Assessing the suitability for Aedes albopictus and dengue transmission risk in China with a delay differential equation model. PLoS Neglected Tropical Diseases, 2021, 15, e0009153.	1.3	14
3	Impact of climatic, demographic and disease control factors on the transmission dynamics of COVID-19 in large cities worldwide. One Health, 2021, 12, 100221.	1.5	26
4	Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nature Communications, 2021, 12, 3971.	5.8	14
5	Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planetary Health, The, 2021, 5, e404-e414.	5.1	165
6	How to model the impact of climate change on vector-borne diseases?. , 2021, , 26-31.		0
7	Modelling the impact of climate change on the distribution and abundance of tsetse in Northern Zimbabwe. Parasites and Vectors, 2020, 13, 526.	1.0	14
8	Potential for Zika virus transmission by mosquitoes in temperate climates. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200119.	1.2	9
9	Climate Variability and Malaria over West Africa. American Journal of Tropical Medicine and Hygiene, 2020, 102, 1037-1047.	0.6	23
10	Impact of recent and future climate change on vectorâ€borne diseases. Annals of the New York Academy of Sciences, 2019, 1436, 157-173.	1.8	350
11	Modeling Potential Habitat for Amblyomma Tick Species in California. Insects, 2019, 10, 201.	1.0	30
12	The effect of temperature, farm density and foot-and-mouth disease restrictions on the 2007 UK bluetongue outbreak. Scientific Reports, 2019, 9, 112.	1.6	10
13	Impact of ENSO 2016–17 on regional climate and malaria vector dynamics in Tanzania. Environmental Research Letters, 2019, 14, 075009.	2.2	16
14	The UK's suitability for <i>Aedes albopictus</i> in current and future climates. Journal of the Royal Society Interface, 2019, 16, 20180761.	1.5	36
15	Lag effect of climatic variables on dengue burden in India. Epidemiology and Infection, 2019, 147, e170.	1.0	55
16	Bluetongue risk under future climates. Nature Climate Change, 2019, 9, 153-157.	8.1	21
17	The Moderate Impact of the 2015 El Niño over East Africa and Its Representation in Seasonal Reforecasts. Journal of Climate, 2019, 32, 7989-8001.	1.2	13
18	Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts. Trends in Parasitology, 2018, 34, 227-245.	1.5	78

CYRIL CAMINADE

#	Article	IF	CITATIONS
19	Predicting the distribution of Phortica variegata and potential for Thelazia callipaeda transmission in Europe and the United Kingdom. Parasites and Vectors, 2018, 11, 272.	1.0	29
20	Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transboundary and Emerging Diseases, 2018, 65, 199-216.	1.3	126
21	Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 119-124.	3.3	144
22	Dengue burden in India: recent trends and importance of climatic parameters. Emerging Microbes and Infections, 2017, 6, 1-10.	3.0	133
23	Towards a comprehensive climate impacts assessment of solar geoengineering. Earth's Future, 2017, 5, 93-106.	2.4	45
24	Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases. Infectious Diseases: Research and Treatment, 2017, 10, 117863361773229.	0.7	73
25	Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal. International Journal of Environmental Research and Public Health, 2017, 14, 1119.	1.2	27
26	Reply to Gautret et al. Journal of Infectious Diseases, 2017, 215, 661-662.	1.9	0
27	Co-occurrence of viruses and mosquitoes at the vectors' optimal climate range: An underestimated risk to temperate regions?. PLoS Neglected Tropical Diseases, 2017, 11, e0005604.	1.3	13
28	The role of climate change in a developing threat: the case of bluetongue in Europe. OIE Revue Scientifique Et Technique, 2017, 36, 467-478.	0.5	13
29	A dynamic, climate-driven model of Rift Valley fever. Geospatial Health, 2016, 11, 394.	0.3	18
30	Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty. Geospatial Health, 2016, 11, 393.	0.3	21
31	Climateâ€driven changes to the spatioâ€ŧemporal distribution of the parasitic nematode, <i>Haemonchus contortus,</i> in sheep in Europe. Global Change Biology, 2016, 22, 1271-1285.	4.2	56
32	A model to assess the efficacy of vaccines for control of liver fluke infection. Scientific Reports, 2016, 6, 23345.	1.6	19
33	Malaria in a warmer West Africa. Nature Climate Change, 2016, 6, 984-985.	8.1	8
34	Climate Change and Vector-borne Diseases: Where Are We Next Heading?. Journal of Infectious Diseases, 2016, 214, 1300-1301.	1.9	16
35	Modeling of spatio-temporal variation in plague incidence in Madagascar from 1980 to 2007. Spatial and Spatio-temporal Epidemiology, 2016, 19, 125-135.	0.9	10
36	Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 209-211.	0.7	17

CYRIL CAMINADE

#	Article	IF	CITATIONS
37	Modelling recent and future climatic suitability for fasciolosis in Europe. Geospatial Health, 2015, 9, 301.	0.3	54
38	Demonstration of successful malaria forecasts for Botswana using an operational seasonal climate model. Environmental Research Letters, 2015, 10, 044005.	2.2	26
39	Variability and Predictability of West African Droughts: A Review on the Role of Sea Surface Temperature Anomalies. Journal of Climate, 2015, 28, 4034-4060.	1.2	148
40	Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions. International Journal of Environmental Research and Public Health, 2014, 11, 903-918.	1.2	45
41	A Non-Stationary Relationship between Global Climate Phenomena and Human Plague Incidence in Madagascar. PLoS Neglected Tropical Diseases, 2014, 8, e3155.	1.3	42
42	Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3286-3291.	3.3	431
43	Towards seasonal forecasting of malaria in India. Malaria Journal, 2014, 13, 310.	0.8	27
44	Recent and projected future climatic suitability of North America for the Asian tiger mosquito Aedes albopictus. Parasites and Vectors, 2014, 7, 532.	1.0	57
45	Climate Induced Effects on Livestock Population and Productivity in the Mediterranean Area. Advances in Global Change Research, 2013, , 135-156.	1.6	8
46	Severity, duration and frequency of drought in SE England from 1697 to 2011. Climatic Change, 2013, 121, 673-687.	1.7	40
47	The Effect of Vaccination Coverage and Climate on Japanese Encephalitis in Sarawak, Malaysia. PLoS Neglected Tropical Diseases, 2013, 7, e2334.	1.3	20
48	Useful decadal climate prediction at regional scales? A look at the ENSEMBLES stream 2 decadal hindcasts. Environmental Research Letters, 2012, 7, 044012.	2.2	9
49	Suitability of European climate for the Asian tiger mosquito <i>Aedes albopictus</i> : recent trends and future scenarios. Journal of the Royal Society Interface, 2012, 9, 2708-2717.	1.5	282
50	Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe. Journal of the Royal Society Interface, 2012, 9, 339-350.	1.5	129
51	The Spatial Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal. PLoS ONE, 2011, 6, e22192.	1.1	77
52	Mapping Rift Valley fever and malaria risk over West Africa using climatic indicators. Atmospheric Science Letters, 2011, 12, 96-103.	0.8	28
53	Interannual and decadal SSTâ€forced responses of the West African monsoon. Atmospheric Science Letters, 2011, 12, 67-74.	0.8	132
54	Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 2010, 35, 75-94.	1.7	91

CYRIL CAMINADE

#	Article	IF	CITATIONS
55	Impact of climate change on human and animal health. Veterinary Record, 2010, 167, 586-586.	0.2	9
56	Environmental variability and vulnerable livelihoods: Minimising risks and optimising opportunities for poverty alleviation. Journal of International Development, 2009, 21, 403-418.	0.9	45
57	Influence of increased greenhouse gases and sulphate aerosols concentration upon diurnal temperature range over Africa at the end of the 20th century. Geophysical Research Letters, 2006, 33, .	1.5	7
58	West African monsoon response to greenhouse gas and sulphate aerosol forcing under two emission scenarios. Climate Dynamics, 2006, 26, 531-547.	1.7	12