Brian Ruffell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4237526/publications.pdf Version: 2024-02-01

RDIAN RHEFELL

#	Article	IF	CITATIONS
1	TIM-3 blockade enhances IL-12-dependent antitumor immunity by promoting CD8 ⁺ T cell and XCR1 ⁺ dendritic cell spatial co-localization. , 2022, 10, e003571.		13
2	Metabolism in tumor-associated macrophages. International Review of Cell and Molecular Biology, 2022, 367, 65-100.	3.2	10
3	Detection of exogenous DNA uptake by murine dendritic cells. STAR Protocols, 2022, 3, 101464.	1.2	0
4	Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nature Materials, 2021, 20, 548-559.	27.5	125
5	The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity, 2021, 54, 1154-1167.e7.	14.3	109
6	Macrophage-Derived Cholesterol Contributes to Therapeutic Resistance in Prostate Cancer. Cancer Research, 2021, 81, 5477-5490.	0.9	48
7	Cavity macrophages stop anti-tumor TÂcells. Cancer Cell, 2021, 39, 900-902.	16.8	2
8	The Immune Microenvironment and Cancer Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037424.	6.2	57
9	Dendritic Cells and Their Role in Immunotherapy. Frontiers in Immunology, 2020, 11, 924.	4.8	253
10	The Unfolded Protein Response Mediator PERK Governs Myeloid Cell-Driven Immunosuppression in Tumors through Inhibition of STING Signaling. Immunity, 2020, 52, 668-682.e7.	14.3	107
11	Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. British Journal of Cancer, 2019, 121, 556-566.	6.4	86
12	AMPK Alpha-1 Intrinsically Regulates the Function and Differentiation of Tumor Myeloid-Derived Suppressor Cells. Cancer Research, 2019, 79, 5034-5047.	0.9	37
13	Oncogenic KRAS Drives Immune Suppression in Colorectal Cancer. Cancer Cell, 2019, 35, 535-537.	16.8	14
14	Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 2019, 19, 369-382.	22.7	1,365
15	moDCs, Less Problems. Immunity, 2018, 48, 6-8.	14.3	8
16	TIM-3 Regulates CD103+ Dendritic Cell Function and Response to Chemotherapy in Breast Cancer. Cancer Cell, 2018, 33, 60-74.e6.	16.8	270
17	Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer. Breast Cancer Research and Treatment, 2018, 171, 283-293.	2.5	15
18	Mucosal Immunity in the Female Murine Mammary Gland. Journal of Immunology, 2018, 201, 734-746.	0.8	58

BRIAN RUFFELL

#	Article	IF	CITATIONS
19	Reducing interferon'ce in stem cells. Nature Cell Biology, 2017, 19, 597-599.	10.3	Ο
20	Docetaxel and mitoxantrone before radical prostatectomy in men with high-risk prostate cancer. Anti-Cancer Drugs, 2017, 28, 120-126.	1.4	10
21	Inflammation, ROS, and Mutagenesis. Cancer Cell, 2017, 32, 727-729.	16.8	164
22	Tipping the Balancing ACT. Cancer Cell, 2016, 30, 367-368.	16.8	1
23	Immune Regulation of the Metastatic Process. Advances in Cancer Research, 2016, 132, 139-163.	5.0	14
24	Dendritic Cells and Cancer Immunity. Trends in Immunology, 2016, 37, 855-865.	6.8	624
25	HDAC Inhibitors Enhance T-Cell Chemokine Expression and Augment Response to PD-1 Immunotherapy in Lung Adenocarcinoma. Clinical Cancer Research, 2016, 22, 4119-4132.	7.0	266
26	Bruton Tyrosine Kinase–Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discovery, 2016, 6, 270-285.	9.4	408
27	Monocytes promote liver carcinogenesis in an oncogene-specific manner. Journal of Hepatology, 2016, 64, 881-890.	3.7	13
28	Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre-clinical models. Oncotarget, 2016, 7, 82482-82492.	1.8	78
29	TH2-Polarized CD4+ T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunology Research, 2015, 3, 518-525.	3.4	197
30	Macrophages and Therapeutic Resistance in Cancer. Cancer Cell, 2015, 27, 462-472.	16.8	1,130
31	Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a. Breast Cancer Research and Treatment, 2015, 154, 495-508.	2.5	52
32	Macrophage IL-10 Blocks CD8+ T Cell-Dependent Responses to Chemotherapy by Suppressing IL-12 Expression in Intratumoral Dendritic Cells. Cancer Cell, 2014, 26, 623-637.	16.8	751
33	B Cells Regulate Macrophage Phenotype and Response to Chemotherapy in Squamous Carcinomas. Cancer Cell, 2014, 25, 809-821.	16.8	245
34	Some DCs Are "Bâ€etter. Immunity, 2013, 38, 626-628.	14.3	0
35	Tumor-Infiltrating Regulatory T Cells Inhibit Endogenous Cytotoxic T Cell Responses to Lung Adenocarcinoma. Journal of Immunology, 2013, 191, 2009-2017.	0.8	116
36	Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes and Development, 2013, 27, 2086-2098.	5.9	74

BRIAN RUFFELL

#	Article	IF	CITATIONS
37	CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 ⁺ T cells. Oncolmmunology, 2013, 2, e26968.	4.6	311
38	Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2796-2801.	7.1	393
39	Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 2012, 33, 119-126.	6.8	721
40	MRI of Tumor-Associated Macrophages with Clinically Applicable Iron Oxide Nanoparticles. Clinical Cancer Research, 2011, 17, 5695-5704.	7.0	262
41	Histamine restricts cancer: nothing to sneeze at. Nature Medicine, 2011, 17, 43-44.	30.7	15
42	Differential Use of Chondroitin Sulfate to Regulate Hyaluronan Binding by Receptor CD44 in Inflammatory and Interleukin 4-activated Macrophages. Journal of Biological Chemistry, 2011, 286, 19179-19190.	3.4	47
43	Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discovery, 2011, 1, 54-67.	9.4	1,486
44	Lymphocytes in cancer development: Polarization towards pro-tumor immunity. Cytokine and Growth Factor Reviews, 2010, 21, 3-10.	7.2	198
45	CD44 and its Role in Inflammation and Inflammatory Diseases. Inflammation and Allergy: Drug Targets, 2009, 8, 208-220.	1.8	163
46	Hyaluronan Induces Cell Death in Activated T Cells through CD44. Journal of Immunology, 2008, 181, 7044-7054.	0.8	58
47	Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding. Biochemical and Biophysical Research Communications, 2005, 334, 306-312.	2.1	17
48	Role of CD44 and Hyaluronan in Neutrophil Recruitment. Journal of Immunology, 2004, 173, 7594-7601.	0.8	178