## Junfang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4237209/publications.pdf Version: 2024-02-01



LUNEANC ZHAO

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Exploring the relationships between climatic variables and climate-induced yield of spring maize in<br>Northeast China. Agriculture, Ecosystems and Environment, 2015, 207, 79-90.                                                  | 5.3 | 69        |
| 2  | Effects of climate change on cultivation patterns of spring maize and its climatic suitability in Northeast China. Agriculture, Ecosystems and Environment, 2015, 202, 178-187.                                                     | 5.3 | 52        |
| 3  | Variety distribution pattern and climatic potential productivity of spring maize in Northeast China under climate change. Science Bulletin, 2012, 57, 3497-3508.                                                                    | 1.7 | 40        |
| 4  | Drought monitoring based on TIGGE and distributed hydrological model in Huaihe River Basin, China.<br>Science of the Total Environment, 2016, 553, 358-365.                                                                         | 8.0 | 30        |
| 5  | Efficiency enhancement of a process-based rainfall–runoff model using a new modified AdaBoost.RT<br>technique. Applied Soft Computing Journal, 2014, 23, 521-529.                                                                   | 7.2 | 29        |
| 6  | An integrated remote sensing and model approach for assessing forest carbon fluxes in China. Science of the Total Environment, 2022, 811, 152480.                                                                                   | 8.0 | 29        |
| 7  | Evaluating Spatial-Temporal Dynamics of Net Primary Productivity of Different Forest Types in Northeastern China Based on Improved FORCCHN. PLoS ONE, 2012, 7, e48131.                                                              | 2.5 | 28        |
| 8  | Coincidence of variation in potato yield and climate in northern China. Science of the Total<br>Environment, 2016, 573, 965-973.                                                                                                    | 8.0 | 27        |
| 9  | Establishing and validating individual-based carbon budget model FORCCHN of forest ecosystems in<br>China. Acta Ecologica Sinica, 2007, 27, 2684-2694.                                                                              | 1.9 | 23        |
| 10 | Variations in climatic suitability and planting regionalization for potato in northern China under climate change. PLoS ONE, 2018, 13, e0203538.                                                                                    | 2.5 | 21        |
| 11 | Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest<br>types based on an individual tree-based model FORCCHN and remote sensing. Global and Planetary<br>Change, 2019, 182, 103010. | 3.5 | 21        |
| 12 | Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010. Journal of Meteorological Research, 2014, 28, 1168-1181.                                                        | 2.4 | 20        |
| 13 | Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in<br>Inner Mongolia, China. PLoS ONE, 2017, 12, e0185690.                                                                            | 2.5 | 17        |
| 14 | Assessment of the radiation effect of aerosols on maize production in China. Science of the Total Environment, 2020, 720, 137567.                                                                                                   | 8.0 | 17        |
| 15 | Simulating net carbon budget of forest ecosystems and its response to climate change in northeastern China using improved FORCCHN. Chinese Geographical Science, 2012, 22, 29-41.                                                   | 3.0 | 16        |
| 16 | A review of forest carbon cycle models on spatiotemporal scales. Journal of Cleaner Production, 2022, 339, 130692.                                                                                                                  | 9.3 | 14        |
| 17 | Spatial–temporal variations of carbon storage of the global forest ecosystem under future climate change. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 603-624.                                                | 2.1 | 13        |
| 18 | Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems. Global and Planetary Change, 2021, 203, 103542.                                       | 3.5 | 12        |

JUNFANG ZHAO

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050. American Journal of Climate Change, 2013, 02, 191-197.                                                                                          | 0.9 | 10        |
| 20 | An innovative method for dynamic update of initial water table in XXT model based on neural network<br>technique. Applied Soft Computing Journal, 2013, 13, 4185-4193.                                                             | 7.2 | 9         |
| 21 | Evaluation of agricultural climatic resource utilization during spring maize cultivation in Northeast<br>China under climate change. Journal of Meteorological Research, 2013, 27, 758-768.                                        | 1.0 | 8         |
| 22 | Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast<br>China under future climate scenarios. Physics and Chemistry of the Earth, 2015, 87-88, 87-96.                                | 2.9 | 8         |
| 23 | Multidecadal changes in moisture condition during climatic growing period of crops in Northeast<br>China. Physics and Chemistry of the Earth, 2015, 87-88, 28-42.                                                                  | 2.9 | 6         |
| 24 | Agricultural Adaptation to Drought for Different Cropping Systems in Southern China under Climate<br>Change. Journal of the American Water Resources Association, 2019, 55, 1235-1247.                                             | 2.4 | 4         |
| 25 | Effects of Climate Change on the Climatic Production Potential of Potatoes in Inner Mongolia, China.<br>Sustainability, 2022, 14, 7836.                                                                                            | 3.2 | 4         |
| 26 | Exploring the dynamics of agricultural climatic resource utilization of spring maize over the past 50 years in Northeast China. Physics and Chemistry of the Earth, 2015, 87-88, 19-27.                                            | 2.9 | 3         |
| 27 | Integrated Remote Sensing and Crop Model Approach for Impact Assessment of Aerosols on Biomass<br>Accumulation of Maize. IEEE Journal of Selected Topics in Applied Earth Observations and Remote<br>Sensing, 2021, 14, 7237-7245. | 4.9 | 2         |
| 28 | Soil Moisture Assessment Based on Multiâ€Source Remotely Sensed Data in the Huaihe River Basin,<br>China. Journal of the American Water Resources Association, 2020, 56, 935-948.                                                  | 2.4 | 1         |