
Ramon Rios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4236251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Regio―and Enantioselective Organocatalytic γâ€Allylic Alkylation of Quinolines. Advanced Synthesis and Catalysis, 2021, 363, 1341-1345.	2.1	5
2	Organocatalytic Amination of Pyrazolones with Azodicarboxylates: Scope and Limitations. European Journal of Organic Chemistry, 2021, 2021, 2362-2366.	1.2	7
3	Studying the reactivity of alkyl substituted BODIPYs: first enantioselective addition of BODIPY to MBH carbonates. Chemical Science, 2021, 12, 4503-4508.	3.7	9
4	Cobalt-containing zeolitic imidazole frameworks for C–H activation using visible-light redox photocatalysis. Catalysis Science and Technology, 2020, 10, 7262-7269.	2.1	13
5	Enantioselective Synthesis of Alkyl Azaarenes. Asian Journal of Organic Chemistry, 2019, 8, 1800-1812.	1.3	9
6	Visible light induced oxidative hydroxylation of boronic acids. Tetrahedron Letters, 2019, 60, 660-663.	0.7	15
7	Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chemical Science, 2019, 10, 4107-4115.	3.7	28
8	Synergistic Catalysis: Highly Enantioselective Cascade Reaction for the Synthesis of Dihydroacridines. Chemistry - A European Journal, 2019, 25, 7623-7627.	1.7	10
9	Synthesis, Photophysics, and Solvatochromic Studies of an Aggregated-Induced-Emission Luminogen Useful in Bioimaging. Sensors, 2019, 19, 4932.	2.1	5
10	Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science and Technology, 2019, 9, 6308-6317.	2.1	1
11	Hybrid catalysts based on N-heterocyclic carbene anchored on hierarchical zeolites. RSC Advances, 2019, 9, 35336-35344.	1.7	5
12	Synergistic catalysis: enantioselective cyclopropanation of alkylidene benzoxazoles by Pd(<scp>ii</scp>) and secondary amine catalysis. Scope, limitations and mechanistic insight. Organic Chemistry Frontiers, 2018, 5, 806-812.	2.3	18
13	New development in the enantioselective synthesis of spiro compounds. Chemical Society Reviews, 2018, 47, 5946-5996.	18.7	293
14	Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chemical Science, 2018, 9, 6368-6373.	3.7	40
15	Syntheses of Lactams by Tandem Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1934-1956.	1.3	13
16	Synergistic Catalysis: Highly Enantioselective Acetyl Azaâ€arene Addition to Enals. Chemistry - A European Journal, 2018, 24, 13306-13310.	1.7	14
17	Organocatalytic Cyclopropanation of (<i>E</i>)-Dec-2-enal: Synthesis, Spectral Analysis and Mechanistic Understanding. Journal of Chemical Education, 2018, 95, 1832-1839.	1.1	7
18	Synthetic applications of vinyl cyclopropane opening. Organic and Biomolecular Chemistry, 2017, 15, 2479-2490.	1.5	127

#	Article	IF	CITATIONS
19	Highly Diastereo―and Enantioselective Synthesis of αâ€Spiroâ€Î´â€lactams by an Organocascade Reaction. European Journal of Organic Chemistry, 2017, 2017, 1749-1756.	1.2	19
20	Highly Enantioselective Synthesis of Alkylpyridine Derivatives through a Michael/Michael/Aldol Cascade Reaction. European Journal of Organic Chemistry, 2017, 2017, 719-725.	1.2	7
21	Organophotocatalytic Synthesis of Phosphoramidates. Advanced Synthesis and Catalysis, 2016, 358, 719-723.	2.1	29
22	Photoinduced Intramolecular Haloarylation and Hydroarylation of Alkynes. Asian Journal of Organic Chemistry, 2016, 5, 981-985.	1.3	12
23	Synergistic Catalysis: Asymmetric Synthesis of Cyclopentanes Bearing Four Stereogenic Centers. Synthesis, 2016, 49, 167-174.	1.2	4
24	Enantioselective Organocatalytic Cyclopropanation of Enals Using Benzyl Chlorides. Journal of Organic Chemistry, 2016, 81, 3488-3500.	1.7	26
25	Organocatalytic Fluoromalonate Addition to Tetrahydroisoquinolines through a CDC process. ChemistrySelect, 2016, 1, 13-16.	0.7	8
26	Acetaldehyde: A Small Organic Molecule with Big Impact on Organocatalytic Reactions. Chemistry - A European Journal, 2016, 22, 2214-2234.	1.7	18
27	Synergistic Catalysis: Enantioselective Ring Expansion of Vinyl Cyclopropanes Combining Four Catalytic Cycles for the Synthesis of Highly Substituted Spirocyclopentanes Bearing up to Four Stereocenters. Chemistry - A European Journal, 2016, 22, 9923-9928.	1.7	67
28	Merging Transition-Metal Activation and Aminocatalysis. Synthesis, 2016, 48, 960-973.	1.2	37
29	Synergistic catalysis: cis-cyclopropanation of benzoxazoles. Chemical Science, 2016, 7, 984-988.	3.7	43
30	Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones. Scientific Reports, 2015, 5, 16886.	1.6	10
31	Catalyst-free photooxidation of triarylphosphines under aerobic conditions. Journal of Saudi Chemical Society, 2015, 19, 706-709.	2.4	22
32	Highly Diastereoselective Synthesis of Spiropyrazolones. Molecules, 2015, 20, 8574-8582.	1.7	13
33	Catalyst-free photocyclopropanation of dibromomalonates with alkenes: an approach to multisubstituted cyclopropanes. Tetrahedron Letters, 2015, 56, 6499-6502.	0.7	8
34	Highly effective design strategy for the heterogenisation of chemo- and enantioselective organocatalysts. Catalysis Science and Technology, 2015, 5, 660-665.	2.1	16
35	Synergistic Catalysis: Enantioselective Addition of Alkylbenzoxazoles to Enals. Chemistry - A European Journal, 2014, 20, 16853-16857.	1.7	53
36	Catalytic asymmetric one-pot synthesis of α-methylene-γ-lactams. Tetrahedron, 2014, 70, 75-82.	1.0	29

#	Article	IF	CITATIONS
37	Enantioselective methodologies using N-carbamoyl-imines. Chemical Society Reviews, 2014, 43, 611-630.	18.7	87
38	Synergistic catalysis: highly diastereoselective benzoxazole addition to Morita–Baylis–Hillman carbonates. Chemical Communications, 2014, 50, 7447-7450.	2.2	40
39	Expanding the Scope of the Organocatalytic Addition of Fluorobis(phenylsulfonyl)methane to Enals: Enantioselective Cascade Synthesis of Fluoroindane and Fluorochromanol Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 437-446.	2.1	19
40	Three-component diastereoselective cascade synthesis of thiohydantoins. Tetrahedron Letters, 2013, 54, 7183-7187.	0.7	6
41	First one-pot organocatalytic synthesis of α-methylene-γ-lactones. Chemical Communications, 2013, 49, 1184.	2.2	45
42	Enantioselective Organocatalytic Amination of Pyrazolones. Asian Journal of Organic Chemistry, 2013, 2, 64-68.	1.3	36
43	First Enantioselective Organocatalytic Addition of Nitromethylphenylsulfone to Enals. Enantioselective Synthesis of Cyclohexenones Bearing 3 Contiguousstereogeniccenters. Current Organic Synthesis, 2013, 10, 467-471.	0.7	0
44	6.15 C–N Bond Formation: Aziridine Formation. , 2012, , 399-413.		5
45	Enantioselective methodologies for the synthesis of spiro compounds. Chemical Society Reviews, 2012, 41, 1060-1074.	18.7	660
46	Organocatalytic enantioselective pyrazol-3-one addition to maleimides: Reactivity and stereochemical course. Organic and Biomolecular Chemistry, 2012, 10, 1645.	1.5	60
47	Enantioselective organocatalytic oxyamination of unprotected 3-substituted oxindoles. Organic and Biomolecular Chemistry, 2012, 10, 431-439.	1.5	33
48	Enantioselective addition of oxazolones to maleimides. An easy entry to quaternary aminoacids. New Journal of Chemistry, 2012, 36, 613-618.	1.4	13
49	Organocatalytic enantioselective methodologies using Morita–Baylis–Hillman carbonates and acetates. Catalysis Science and Technology, 2012, 2, 267-278.	2.1	147
50	Organocatalytic Enantioselective αâ€Alkylation of Aldehydes. ChemCatChem, 2012, 4, 942-953.	1.8	41
51	Organocatalytic enantioselective substitution of MBH carbonates by 2-fluoromalonates. Tetrahedron Letters, 2012, 53, 4124-4129.	0.7	19
52	Enantioselective organocatalytic asymmetric allylic alkylation. Bis(phenylsulfonyl)methane addition to MBH carbonates. Organic and Biomolecular Chemistry, 2011, 9, 7986.	1.5	40
53	Highly enantioselective cascade synthesis of spiropyrazolones. Organic and Biomolecular Chemistry, 2011, 9, 6519.	1.5	104
54	Highly enantioselective organocatalytic cascade reaction for the synthesis of piperidines and oxazolidines. Tetrahedron, 2011, 67, 8942-8950.	1.0	44

#	Article	IF	CITATIONS
55	Asymmetric Organocatalytic Cyclization and Cycloaddition Reactions. Chemical Reviews, 2011, 111, 4703-4832.	23.0	788
56	Oxazolones in Organocatalysis, New Tricks for an Old Reagent. Chemistry - an Asian Journal, 2011, 6, 720-734.	1.7	172
57	Highly Stereoselective Synthesis of Spiropyrazolones. European Journal of Organic Chemistry, 2011, 2011, 1318-1325.	1.2	98
58	Alkylation of Oxazolones and Related Heterocycles through an S _N 1 Reaction. European Journal of Organic Chemistry, 2011, 2011, 2053-2056.	1.2	16
59	Enantioselective Organocatalytic Synthesis of Fluorinated Molecules. Chemistry - A European Journal, 2011, 17, 2018-2037.	1.7	207
60	Catalytic Asymmetric Aziridination of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2011, 17, 7904-7917.	1.7	80
61	Asymmetric organocatalytic anthrone additions to activated alkenes. Tetrahedron, 2011, 67, 2513-2529.	1.0	28
62	Enantioselective Organocatalytic Synthesis of 5 and 6 Membered Heterocycles. Current Organic Chemistry, 2011, 15, 4046-4082.	0.9	9
63	One-pot highly enantioselective catalytic Mannich-type reactions between aldehydes and stable α-amido sulfones: asymmetric synthesis of β-amino aldehydes and β-amino acids. Tetrahedron Letters, 2010, 51, 234-237.	0.7	27
64	Highly Enantioselective Addition of 1â€Fluoroâ€1â€nitro(phenylsulfonyl)methane to α,βâ€Unsaturated Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 5464-5470.	1.2	28
65	Bifunctional Thioureaâ€Catalyzed Asymmetric Addition of Anthrones to Maleimides. Advanced Synthesis and Catalysis, 2010, 352, 1102-1106.	2.1	53
66	Substrateâ€Dependent Nonlinear Effects in Proline–Thioureaâ€Catalyzed Aldol Reactions: Unraveling the Role of the Thiourea Coâ€Catalyst. Chemistry - A European Journal, 2010, 16, 1142-1148.	1.7	82
67	Enantioselective Organocatalytic Addition of Oxazolones to 1,1â€Bis(phenylsulfonyl)ethylene: A Convenient Asymmetric Synthesis of Quaternary αâ€Amino Acids. Chemistry - A European Journal, 2010, 16, 5354-5361.	1.7	72
68	Enantioselective Organocatalytic Addition of Azlactones to Maleimides: A Highly Stereocontrolled Entry to 2,2â€Disubstitutedâ€2 <i>H</i> â€oxazolâ€5â€ones. Chemistry - A European Journal, 2010, 16, 9884-988	89 ^{1.7}	85
69	Nonlinear Effects in Asymmetric Amino Acid Catalysis by Multiple Interconnected Stereoselective Catalytic Networks. Chemistry - A European Journal, 2010, 16, 13935-13940.	1.7	10
70	Searching for Untrodden Paths in Organocatalysis Territory. Synlett, 2010, 2010, 1883-1908.	1.0	1
71	Sulfones: new reagents in organocatalysis. Chemical Society Reviews, 2010, 39, 2018.	18.7	317
72	Asymmetric organocatalytic Michael addition of azlactones to cis-1,2-bis(phenylsulfonyl)ethene. A simple entry to quaternary α-amino acids. New Journal of Chemistry, 2010, 34, 1816.	1.4	25

#	Article	IF	CITATIONS
73	Organocatalytic synthesis of spiro compounds via a cascade Michael–Michael-aldol reaction. Chemical Communications, 2010, 46, 6953.	2.2	219
74	Similarity between the kinetic parameters of the buffer-mediated proton exchange reaction of a xanthenic derivative in its ground- and excited-state. Physical Chemistry Chemical Physics, 2010, 12, 323-327.	1.3	13
75	Kinetic Resolution: A Powerful Tool for the Synthesis of Planar-Chiral Ferrocenes. Molecules, 2009, 14, 4747-4757.	1.7	44
76	En Route to New Chiral Ferrocene Derivatives: Dead Ends, Detours, and Avenues. Synlett, 2009, 2009, 1863-1886.	1.0	10
77	Organocatalytic Domino Reactions. Current Organic Chemistry, 2009, 13, 1432-1474.	0.9	310
78	Highly Enantio―and Diastereoselective Organocatalytic Desymmetrization of Prochiral Cyclohexanones by Simple Direct Aldol Reaction Catalyzed by Proline. Chemistry - A European Journal, 2009, 15, 6564-6568.	1.7	102
79	Formal Highly Enantioselective Organocatalytic Addition of Fluoromethyl Anion to α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2009, 15, 7035-7038.	1.7	91
80	Formal Highly Enantioselective Organocatalytic Addition of Alkyl Anions to α,βâ€Unsaturated Aldehydes: Application to the Synthesis of Isotopeâ€Enantiomers. Chemistry - A European Journal, 2009, 15, 11095-11099.	1.7	61
81	Highly Regio―and Diastereoselective Oxazolâ€5â€one Addition to Nitrostyrenes. European Journal of Organic Chemistry, 2009, 2009, 199-203.	1.2	44
82	Asymmetric Organocatalytic Cyclopropanation – Highly Stereocontrolled Synthesis of Chiral Cyclopropanes with Quaternary Stereocenters. European Journal of Organic Chemistry, 2009, 2009, 3075-3080.	1.2	82
83	Highly <i>Z</i> ―and Enantioselective Ringâ€Opening/Crossâ€Metathesis Reactions and <i>Z</i> â€Selective Ringâ€Opening Metathesis Polymerization. Angewandte Chemie - International Edition, 2009, 48, 8827-8831.	7.2	14
84	Organocatalytic kinetic resolution of a planar-chiral ferrocenecarbaldehyde. Tetrahedron: Asymmetry, 2009, 20, 1314-1318.	1.8	33
85	Highly enantioselective organocatalytic synthesis of piperidines. Formal synthesis of (â^')-Paroxetine. Tetrahedron Letters, 2009, 50, 1943-1946.	0.7	92
86	Enantioselective addition of anthrones to α,β-unsaturated aldehydes. Tetrahedron Letters, 2009, 50, 3067-3069.	0.7	26
87	Highly enantioselective fluoromalonate addition to α,β-unsaturated aldehydes. Tetrahedron Letters, 2009, 50, 5021-5024.	0.7	58
88	Enantioselective addition of oxindoles to aliphatic α,β-unsaturated aldehydes. Tetrahedron Letters, 2009, 50, 6624-6626.	0.7	45
89	The Holy Grail of Organocatalysis: Intermolecular αâ€Alkylation of Aldehydes. ChemCatChem, 2009, 1, 437-439.	1.8	66
90	Tuned lifetime, at the ensemble and single molecule level, of a xanthenic fluorescent dye by means of a buffer-mediated excited-state proton exchange reaction. Physical Chemistry Chemical Physics, 2009, 11, 5400.	1.3	20

#	Article	IF	CITATIONS
91	A Mild and Convenient Synthesis of 4-Tosyl-4,5-dihydrooxazoles. Letters in Organic Chemistry, 2009, 6, 293-296.	0.2	4
92	Examples of catalytic asymmetric amine synthesis using organic catalysts. Current Opinion in Drug Discovery & Development, 2009, 12, 824-47.	1.9	1
93	Enantioselective organocatalytic Mannich reactions of ferrocenecarbaldehyde. Tetrahedron Letters, 2008, 49, 6559-6562.	0.7	34
94	Oneâ€₽ot Catalytic Asymmetric Cascade Synthesis of Cycloheptane Derivatives. Chemistry - A European Journal, 2008, 14, 2693-2698.	1.7	52
95	Oneâ€Pot Organocatalytic Domino Michael/αâ€Alkylation Reactions: Direct Catalytic Enantioselective Cyclopropanation and Cyclopentanation Reactions. Chemistry - A European Journal, 2008, 14, 7867-7879.	1.7	152
96	Organocatalytic Enantioselective Aminosulfenylation of α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 8468-8472.	7.2	124
97	Highly Diastereo―and Enantioselective Catalytic Domino Thiaâ€Michael/Aldol Reactions: Synthesis of Benzothiopyrans with Three Contiguous Stereocenters. Advanced Synthesis and Catalysis, 2008, 350, 237-242.	2.1	70
98	Organocatalytic Asymmetric Hydrophosphination of α,βâ€Unsaturated Aldehydes: Development, Mechanism and DFT Calculations. Advanced Synthesis and Catalysis, 2008, 350, 1875-1884.	2.1	87
99	Asymmetric Amplification in the Amino Acid atalyzed Synthesis of Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2008, 350, 9-9.	2.1	0
100	Proline and Lewis base co-catalyzed addition of α,β-unsaturated aldehydes to nitrostyrenes. Tetrahedron Letters, 2008, 49, 1137-1140.	0.7	16
101	Synthesis of a Fluorescent Xanthenic Derivative Useful for Labeling Amine Residues. Journal of Physical Chemistry B, 2008, 112, 10082-10085.	1.2	3
102	One-Pot, Three-Component, Highly Diastereoselective Metal-Free Synthesis of 2,3,4,5-Tetrasubstituted Pyrrolidines. Synlett, 2008, 2008, 1840-1844.	1.0	3
103	Catalytic Enantioselective 5-Hydroxyisoxazolidine Synthesis: An Asymmetric Entry to β-Amino Acids. Synthesis, 2008, 2008, 1153-1157.	1.2	4
104	One-Pot Pyrrolidine-Catalyzed Synthesis of Benzopyrans, Benzothiopyranes, and Dihydroquinolidines. Chimia, 2007, 61, 219.	0.3	16
105	Photophysics of a Xanthenic Derivative Dye Useful as an "On/Off―Fluorescence Probe. Journal of Physical Chemistry A, 2007, 111, 13311-13320.	1.1	22
106	Organocatalytic asymmetric 5-hydroxyisoxazolidine synthesis: A highly enantioselective route to β-amino acids. Chemical Communications, 2007, , 849-851.	2.2	145
107	Organocatalytic Enantioselective Aziridination of α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 778-781.	7.2	223
108	Enantioselective Organocatalytic Hydrophosphination of α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 4507-4510.	7.2	167

#	Article	IF	CITATIONS
109	A Highly Enantioselective Catalytic Domino Aza-Michael/Aldol Reaction: One-Pot Organocatalytic Asymmetric Synthesis of 1,2-Dihydroquinolidines. Advanced Synthesis and Catalysis, 2007, 349, 827-832.	2.1	119
110	A Simple Organocatalytic Enantioselective Cyclopropanation of α,β-Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2007, 349, 1028-1032.	2.1	188
111	Asymmetric Amplification in the Amino Acidâ€Catalyzed Synthesis of Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2007, 349, 1868-1872.	2.1	11
112	Direct Enantioselective Synthesis of Bicyclic Diels–Alder Products. Advanced Synthesis and Catalysis, 2007, 349, 2549-2555.	2.1	62
113	Highly enantioselective organocatalytic addition of unmodified aldehydes to N-Boc protected imines: one-pot asymmetric synthesis of β-amino acids. Tetrahedron Letters, 2007, 48, 421-425.	0.7	55
114	Enantioselective organocatalytic conjugate addition of amines to α,β-unsaturated aldehydes: one-pot asymmetric synthesis of β-amino acids and 1,3-diamines. Tetrahedron Letters, 2007, 48, 2193-2198.	0.7	111
115	A simple and concise catalytic asymmetric entry to tetrahydroxanthenones. Tetrahedron Letters, 2007, 48, 2181-2184.	0.7	51
116	A simple one-pot, three-component, catalytic, highly enantioselective isoxazolidine synthesis. Tetrahedron Letters, 2007, 48, 5701-5705.	0.7	69
117	One-pot organocatalytic domino Michael/α-alkylation reactions: highly enantioselective synthesis of functionalized cyclopentanones and cyclopentanols. Tetrahedron Letters, 2007, 48, 5835-5839.	0.7	76
118	Organocatalytic asymmetric multi-component [C+NC+CC] synthesis of highly functionalized pyrrolidine derivatives. Tetrahedron Letters, 2007, 48, 6252-6257.	0.7	115
119	Organocatalytic highly enantioselective α-selenenylation of aldehydes. Tetrahedron Letters, 2007, 48, 7865-7869.	0.7	50
120	Organocatalytic asymmetric 5-hydroxypyrrolidine synthesis: a highly enantioselective route to 3-substituted proline derivatives. Tetrahedron Letters, 2007, 48, 8695-8699.	0.7	53
121	A Practical, efficient, and atom economic alternative to the Wittig and Horner–Wadsworth–Emmons reactions for the synthesis of (E)-î±,β-unsaturated esters from aldehydes. Tetrahedron, 2006, 62, 476-482.	1.0	62
122	Highly enantioselective synthesis of 2H-1-benzothiopyrans by a catalytic domino reaction. Tetrahedron Letters, 2006, 47, 8547-8551.	0.7	119
123	A one-pot organocatalytic asymmetric entry to tetrahydrothioxanthenones. Tetrahedron Letters, 2006, 47, 8679-8682.	0.7	84
124	Chiral cyclopentadiene-mediated approach to enantioselective heterobimetallic Pauson–Khand reactions. Journal of Organometallic Chemistry, 2005, 690, 358-362.	0.8	22
125	Practical Synthesis of (E)-1±,β-Unsaturated Esters from Aldehydes. Advanced Synthesis and Catalysis, 2005, 347, 1558-1560.	2.1	39
126	Rapid, Highly Diastereoselective Addition of Dialkylzinc Reagents to Atropisomeric 2-Formyl Arylamides ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
127	Rapid, highly diastereoselective addition of dialkylzinc reagents to atropisomeric 2-formyl arylamides. Tetrahedron, 2004, 60, 4543-4548.	1.0	16
128	Reversing the Stereoselectivity of the Intermolecular Pausonâ^'Khand Reaction:  Formation ofendo-Fused Norbornadiene Adducts. Organic Letters, 2002, 4, 1205-1208.	2.4	30
129	Kinetic Resolution of Atropisomeric Amides. Journal of the American Chemical Society, 2002, 124, 10272-10273.	6.6	55
130	An intramolecular Pauson–Khand approach to the synthesis of chiral cyclopentadienes. Tetrahedron Letters, 2002, 43, 1023-1026.	0.7	17
131	Heterobimetallic (Co–W) intermolecular Pauson–Khand reactions: scope and selectivity. Tetrahedron Letters, 2002, 43, 4903-4906.	0.7	24
132	A convenient synthesis of chiral 2-alkynyl-1,3-oxazolines. Tetrahedron: Asymmetry, 2000, 11, 4407-4416.	1.8	13
133	Synthesis, resolution and crystallographic characterization of a new C2-symmetric planar-chiral bipyridine ligand: application to the catalytic enantioselective cyclopropanation of olefins. Chemical Communications, 2000, , 377-378.	2.2	79
134	Stereoselective Inter- and Intramolecular Pauson–Khand Reactions ofN-(2-Alkynoyl) Derivatives of Chiral Oxazolidin-2-ones. European Journal of Organic Chemistry, 1999, 1999, 3459-3478.	1.2	22
135	Direct Catalytic Asymmetric Mannich Reactions and Surroundings. , 0, , 185-205.		3
136	Stereoselective Cyclopropanation of BODIPY Derivatives by an Organocascade Reaction. Advanced Synthesis and Catalysis, 0, , .	2.1	4