Feiran Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4236163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.	8.0	38
2	Mechanisms of growth-promotion and Se-enrichment in <i>Brassica chinensis</i> L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano, 2022, 9, 302-312.	4.3	18
3	Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus) Tj ETQq1 1 0.7 153712.	84314 rgE 8.0	3T /Overlock 27
4	Nanomaterial-induced modulation of hormonal pathways enhances plant cell growth. Environmental Science: Nano, 2022, 9, 1578-1590.	4.3	8
5	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	14.6	26
6	Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. Nanomaterials, 2022, 12, 1341.	4.1	5
7	New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. Journal of Hazardous Materials, 2021, 410, 124959.	12.4	18
8	The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Science of the Total Environment, 2021, 767, 144967.	8.0	23
9	Downregulation of the photosynthetic machinery and carbon storage signaling pathways mediate La2O3 nanoparticle toxicity on radish taproot formation. Journal of Hazardous Materials, 2021, 411, 124971.	12.4	23
10	Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. Environmental Science & Technology, 2021, 55, 12317-12325.	10.0	67
11	Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 2021, 778, 146378.	8.0	28
12	Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Science of the Total Environment, 2021, 780, 146578.	8.0	38
13	Cell Walls Are Remodeled to Alleviate nY ₂ O ₃ Cytotoxicity by Elaborate Regulation of <i>de Novo</i> Synthesis and Vesicular Transport. ACS Nano, 2021, 15, 13166-13177.	14.6	13
14	Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles <i>via</i> promoting soil Si bioavailability. Environmental Science: Nano, 2021, 8, 3865-3878.	4.3	2
15	Dose-dependent effects of CeO ₂ nanomaterials on tomato plant chemistry and insect herbivore resistance. Environmental Science: Nano, 2021, 8, 3577-3589.	4.3	10
16	Fluorescent g-C3N4 nanosheets enhanced photosynthetic efficiency in maize. NanoImpact, 2021, 24, 100363.	4.5	7
17	CeO ₂ Nanoparticles Regulate the Propagation of Antibiotic Resistance Genes by Altering Cellular Contact and Plasmid Transfer. Environmental Science & Technology, 2020, 54, 10012-10021.	10.0	73
18	Phosphate induced surface transformation alleviated the cytotoxicity of Y2O3 nanoparticles to	8.0	8

tobacco BY-2 cells. Science of the Total Environment, 2020, 732, 139276. 18

Feiran Chen

#	Article	IF	CITATIONS
19	A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicology and Environmental Safety, 2020, 202, 110911.	6.0	27
20	Uptake, Transport, and Transformation of CeO ₂ Nanoparticles by Strawberry and Their Impact on the Rhizosphere Bacterial Community. ACS Sustainable Chemistry and Engineering, 2020, 8, 4792-4800.	6.7	42
21	Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environmental Science: Nano, 2019, 6, 1026-1042.	4.3	96
22	Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles. Science of the Total Environment, 2019, 653, 675-683.	8.0	36
23	Metabolism of Ibuprofen by <i>Phragmites australis</i> : Uptake and Phytodegradation. Environmental Science & Technology, 2017, 51, 4576-4584.	10.0	149
24	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	4.3	0