
Laurent Fulcheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4236053/publications.pdf Version: 2024-02-01

LAUDENT FULCHED

#	Article	IF	CITATIONS
1	Waste Gasification by Thermal Plasma: A Review. Waste and Biomass Valorization, 2013, 4, 421-439.	3.4	207
2	Assessment of Carbon Dioxide Dissociation as a New Route for Syngas Production: A Comparative Review and Potential of Plasma-Based Technologies. Energy & Fuels, 2013, 27, 2712-2722.	5.1	103
3	Carbon black processing by thermal plasma. Analysis of the particle formation mechanism. Chemical Engineering Science, 2001, 56, 2123-2132.	3.8	88
4	Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis. Applied Catalysis B: Environmental, 2020, 261, 118228.	20.2	75
5	Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon, 2004, 42, 2543-2549.	10.3	61
6	Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 2022, 47, 25831-25848.	7.1	50
7	Experimental Study on Gasoline Reforming Assisted by Nonthermal Arc Discharge. Energy & Fuels, 2008, 22, 556-560.	5.1	48
8	Three-Phase AC Arc Plasma Systems: A Review. Plasma Chemistry and Plasma Processing, 2015, 35, 565-585.	2.4	41
9	Ethanol and E85 Reforming Assisted by a Non-thermal Arc Discharge. Energy & Fuels, 2010, 24, 2607-2613.	5.1	38
10	Three-Dimensional Unsteady MHD Modeling of a Low-Current High-Voltage Nontransferred DC Plasma Torch Operating With Air. IEEE Transactions on Plasma Science, 2011, 39, 1889-1899.	1.3	35
11	3D Unsteady State MHD Modeling of a 3-Phase AC Hot Graphite Electrodes Plasma Torch. Plasma Chemistry and Plasma Processing, 2013, 33, 491-515.	2.4	30
12	Title is missing!. Plasma Chemistry and Plasma Processing, 1999, 19, 69-89.	2.4	23
13	Comparison of Simple Particle-Radiation Coupling Models Applied on a Plasma Black Process. Plasma Chemistry and Plasma Processing, 2004, 24, 603-623.	2.4	22
14	Hydrocarbons synthesis from syngas by very high pressure plasma. Chemical Engineering Journal, 2014, 241, 1-8.	12.7	21
15	A Comparison Between MHD Modeling and Experimental Results in a 3-Phase AC Arc Plasma Torch: Influence of the Electrode Tip Geometry. Plasma Chemistry and Plasma Processing, 2014, 34, 975-996.	2.4	19
16	Three Stages Modeling of n-Octane Reforming Assisted by a Nonthermal Arc Discharge. Energy & Fuels, 2009, 23, 4931-4936.	5.1	18
17	High Speed Video Camera and Electrical Signal Analyses of Arcs Behavior in a 3-Phase AC Arc Plasma Torch. Plasma Chemistry and Plasma Processing, 2013, 33, 779-796.	2.4	18
18	Thermodynamics and Kinetics Analysis of Gasoline Reforming Assisted by Arc Discharge. Energy & Fuels, 2008, 22, 1888-1893.	5.1	17

LAURENT FULCHERI

#	Article	IF	CITATIONS
19	Influence of temperature and pressure on carbon black size distribution during allothermal cracking of methane. Aerosol Science and Technology, 2016, 50, 26-40.	3.1	16
20	Production of Carbon Nanotubes and Other Nanostructures Via Continuous 3â€Phase AC Plasma Processing. Fullerenes Nanotubes and Carbon Nanostructures, 2004, 12, 571-581.	2.1	15
21	Characterization of a 3-Phase a.c. Free Burning Arc Plasma. Plasma Science and Technology, 2006, 8, 156-163.	1.5	15
22	Experimental Study of Hydrocarbons Synthesis from Syngas by a Tip–Tip Electrical Discharge at Very High Pressure. Plasma Chemistry and Plasma Processing, 2011, 31, 663-679.	2.4	15
23	Study on Argon Plasma Jets at Atmospheric Pressure in Ambient Air Excited by Surface Waves. IEEE Transactions on Plasma Science, 2014, 42, 911-916.	1.3	15
24	Dry reforming of methane in a tip–tip arc discharge reactor at very high pressure. International Journal of Hydrogen Energy, 2015, 40, 3388-3401.	7.1	13
25	Experimental study on plasma-catalytic synthesis of hydrocarbons from syngas. Applied Catalysis A: General, 2019, 588, 117269.	4.3	13
26	Triâ€fold process integration leveraging high―and <scp>lowâ€ŧemperature</scp> plasmas: From biomass to fertilizers with local energy and for local use. Journal of Advanced Manufacturing and Processing, 2021, 3, e10081.	2.4	13
27	Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOxTrap Regeneration Application. Energy & amp; Fuels, 2011, 25, 1034-1044.	5.1	10
28	3-D Flow Modeling of a Three-Phase AC Plasma Torch Working With Air Using a Stationary Source Domain With Gas Radiation. IEEE Transactions on Plasma Science, 2016, 44, 996-1008.	1.3	10
29	Combination of VOC degradation and electro-hydrodynamic pumping actions in a surface dielectric barrier discharge reactor. Chemical Engineering Journal, 2017, 309, 471-479.	12.7	8
30	Development of a volumetric method—experimental test bench for hydrogen storage characterisation. International Journal of Hydrogen Energy, 2007, 32, 1846-1854.	7.1	7
31	Synthesis of Titania Nanoparticles Using a Compact Nonequilibrium Plasma Torch. Japanese Journal of Applied Physics, 2008, 47, 7343.	1.5	7
32	2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming. Energy & Fuels, 2011, 25, 2833-2840.	5.1	6
33	Tailorâ€Made Carbon Nanomaterials for Bulk Applications via Highâ€Intensity Arc Plasma. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 67-75.	2.1	5
34	Non-Equilibrium Nitrogen DC-Arc Plasma Treatment of TiO ₂ Nanopowder. Journal of Nanoscience and Nanotechnology, 2009, 9, 256-260.	0.9	5
35	New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields. Journal Physics D: Applied Physics, 2017, 50, 065203.	2.8	5
36	A New Plasma Electro-Burner Concept for Biomass and Waste Combustion. Waste and Biomass Valorization, 2017, 8, 2791-2805.	3.4	5

LAURENT FULCHERI

#	Article	IF	CITATIONS
37	Applying chemical engineering concepts to non-thermal plasma reactors. Plasma Science and Technology, 2018, 20, 065512.	1.5	5
38	An optimal method for the computation of the parameter <i>R</i> _{<i>s</i>} of the net emission coefficient approximation approach for determining the electrical and thermal characteristics of plasma arcs. Journal Physics D: Applied Physics, 2017, 50, 445202.	2.8	3
39	Electrode sheath model for an argon free burning arc discharge at very high pressure and low intensity. , 2008, , .		2
40	Experimental study on the formation of higher fluorocarbons from CF4 by a tip–tip electrical arc discharge at very high pressure. Journal of Fluorine Chemistry, 2014, 166, 96-103.	1.7	2
41	Theoretical and experimental study of an argon free burning arc dicharge at very high-pressure and low-intensity. , 2008, , .		1
42	Analytical Solution for the Electric Arc Dynamics and Heat Transfer When Exposed to a Magnetic Cross-Field. Journal of Heat Transfer, 2018, 140, .	2.1	1
43	A Combined Finite-Element-Finite-Volume Method for Thermal Arc Numerical Simulation. Journal of Physics: Conference Series, 2019, 1243, 012011.	0.4	1
44	A Simple Theory for Cathode Jets in Plasma Arcs. Journal of Physics: Conference Series, 2019, 1243, 012016.	0.4	1
45	Publisher's Note: "Synthesis of Titania Nanoparticles Using a Compact Nonequilibrium Plasma Torchâ€. Japanese Journal of Applied Physics, 2008, 47, 9019.	1.5	0
46	STM and STS investigation of few-wall carbon nanotubes containing non-hexagonal rings. , 2003, , .		0