Andrea Bernardos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4235660/publications.pdf

Version: 2024-02-01

40 papers

2,809 citations

236925 25 h-index 289244 40 g-index

42 all docs 42 docs citations

times ranked

42

3403 citing authors

#	Article	IF	CITATIONS
1	Towards the Enhancement of Essential Oil Components' Antimicrobial Activity Using New Zein Protein-Gated Mesoporous Silica Microdevices. International Journal of Molecular Sciences, 2021, 22, 3795.	4.1	12
2	Secreted Enzyme-Responsive System for Controlled Antifungal Agent Release. Nanomaterials, 2021, 11, 1280.	4.1	5
3	Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics, 2021, 13, 982.	4.5	5
4	Innovative use of essential oil cold diffusion system for improving air quality on indoor cultural heritage spaces. International Biodeterioration and Biodegradation, 2021, 162, 105251.	3.9	14
5	Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials, 2020, 10, 1290.	4.1	8
6	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	6.7	131
7	Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release, 2020, 323, 624-634.	9.9	64
8	New Oleic Acidâ€Capped Mesoporous Silica Particles as Surfactantâ€Responsive Delivery Systems. ChemistryOpen, 2019, 8, 1052-1056.	1.9	7
9	The efficacy of essential oil components loaded into montmorillonite against <i>Aspergillus niger</i> and <i>Staphylococcus aureus</i> . Flavour and Fragrance Journal, 2019, 34, 151-162.	2.6	22
10	Mesoporous Silicaâ€Based Materials with Bactericidal Properties. Small, 2019, 15, e1900669.	10.0	125
11	Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 2019, 9, 227.	4.1	85
12	The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiologica Et Immunologica Hungarica, 2018, 65, 467-476.	0.8	14
13	Functionalized Silica Nanomaterials as a New Tool for New Industrial Applications., 2018,, 165-196.		3
14	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	6.9	204
15	Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & amp; Interfaces, 2017, 9, 11332-11336.	8.0	64
16	Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 2017, 5, 3069-3083.	5.8	74
17	Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 2017, 53, 3559-3562.	4.1	25
18	Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamerâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 8581-8584.	3.3	33

#	Article	IF	CITATIONS
19	Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 2017, 233, 228-236.	8.2	70
20	An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence <i>in Vivo</i> . Journal of the American Chemical Society, 2017, 139, 8808-8811.	13.7	138
21	Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxinâ€A. ChemistryOpen, 2017, 6, 653-659.	1.9	20
22	Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, 14126-14130.	3.3	14
23	The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control, 2016, 68, 62-68.	5.5	40
24	Frontispiece: Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, .	3.3	0
25	Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Industrial Crops and Products, 2015, 67, 216-220.	5.2	70
26	Antifungal effect of essential oil components against <i>Aspergillus niger</i> when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 2015, 95, 2824-2831.	3.5	63
27	Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 2015, 202, 124-132.	4.4	24
28	Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. International Journal of Nanomedicine, 2014, 9, 2597.	6.7	26
29	Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 2013, 46, 339-349.	15.6	234
30	Enzymeâ€Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 2013, 19, 1346-1356.	3.3	39
31	Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis. Recent Patents on Food, Nutrition & Early (2013, 5, 35-43).	0.9	28
32	Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 10556-10560.	13.8	122
33	Azobenzene Polyesters Used as Gateâ€Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 2012, 18, 13068-13078.	3.3	22
34	Nutritional effects of folic acid controlled release from mesoporous materials. Procedia Food Science, 2011, 1, 1828-1832.	0.6	7
35	Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 2011, 47, 8313.	4.1	40
36	Recent Patents in Food Nanotechnology. Recent Patents on Food, Nutrition & Agriculture, 2011, 3, 172-178.	0.9	4

#	Article	IF	CITATIONS
37	Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides― ACS Nano, 2010, 4, 6353-6368.	14.6	286
38	Enzymeâ€Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie - International Edition, 2009, 48, 5884-5887.	13.8	236
39	Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 2009, 131, 14075-14080.	13.7	235
40	Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 2008, 131, 181-189.	9.9	101