
Andrea Bernardos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4235660/publications.pdf Version: 2024-02-01

ANDREA REDNADOS

#	Article	IF	CITATIONS
1	Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides― ACS Nano, 2010, 4, 6353-6368.	14.6	286
2	Enzymeâ€Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie - International Edition, 2009, 48, 5884-5887.	13.8	236
3	Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 2009, 131, 14075-14080.	13.7	235
4	Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 2013, 46, 339-349.	15.6	234
5	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	6.9	204
6	An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence <i>in Vivo</i> . Journal of the American Chemical Society, 2017, 139, 8808-8811.	13.7	138
7	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	6.7	131
8	Mesoporous Silicaâ€Based Materials with Bactericidal Properties. Small, 2019, 15, e1900669.	10.0	125
9	Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 10556-10560.	13.8	122
10	Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 2008, 131, 181-189.	9.9	101
11	Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 2019, 9, 227.	4.1	85
12	Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 2017, 5, 3069-3083.	5.8	74
13	Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Industrial Crops and Products, 2015, 67, 216-220.	5.2	70
14	Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 2017, 233, 228-236.	8.2	70
15	Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 2017, 9, 11332-11336.	8.0	64
16	Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release, 2020, 323, 624-634.	9.9	64
17	Antifungal effect of essential oil components against <i>Aspergillus niger</i> when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 2015, 95, 2824-2831.	3.5	63
18	Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 2011, 47, 8313.	4.1	40

Andrea Bernardos

#	Article	IF	CITATIONS
19	The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control, 2016, 68, 62-68.	5.5	40
20	Enzymeâ€Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 2013, 19, 1346-1356.	3.3	39
21	Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamerâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 8581-8584.	3.3	33
22	Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis. Recent Patents on Food, Nutrition & Agriculture, 2013, 5, 35-43.	0.9	28
23	Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. International Journal of Nanomedicine, 2014, 9, 2597.	6.7	26
24	Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 2017, 53, 3559-3562.	4.1	25
25	Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 2015, 202, 124-132.	4.4	24
26	Azobenzene Polyesters Used as Gate‣ike Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 2012, 18, 13068-13078.	3.3	22
27	The efficacy of essential oil components loaded into montmorillonite against <i>Aspergillus niger</i> and <i>Staphylococcus aureus</i> . Flavour and Fragrance Journal, 2019, 34, 151-162.	2.6	22
28	Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxinâ€A. ChemistryOpen, 2017, 6, 653-659.	1.9	20
29	Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, 14126-14130.	3.3	14
30	The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiologica Et Immunologica Hungarica, 2018, 65, 467-476.	0.8	14
31	Innovative use of essential oil cold diffusion system for improving air quality on indoor cultural heritage spaces. International Biodeterioration and Biodegradation, 2021, 162, 105251.	3.9	14
32	Towards the Enhancement of Essential Oil Components' Antimicrobial Activity Using New Zein Protein-Gated Mesoporous Silica Microdevices. International Journal of Molecular Sciences, 2021, 22, 3795.	4.1	12
33	Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials, 2020, 10, 1290.	4.1	8
34	Nutritional effects of folic acid controlled release from mesoporous materials. Procedia Food Science, 2011, 1, 1828-1832.	0.6	7
35	New Oleic Acidâ€Capped Mesoporous Silica Particles as Surfactantâ€Responsive Delivery Systems. ChemistryOpen, 2019, 8, 1052-1056.	1.9	7
36	Secreted Enzyme-Responsive System for Controlled Antifungal Agent Release. Nanomaterials, 2021, 11, 1280.	4.1	5

#	Article	IF	CITATIONS
37	Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics, 2021, 13, 982.	4.5	5
38	Recent Patents in Food Nanotechnology. Recent Patents on Food, Nutrition & Agriculture, 2011, 3, 172-178.	0.9	4
39	Functionalized Silica Nanomaterials as a New Tool for New Industrial Applications. , 2018, , 165-196.		3
40	Frontispiece: Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, .	3.3	0