João A Coutinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4235269/publications.pdf

Version: 2024-02-01

741 papers

41,634 citations

98 h-index 6836

755 all docs 755 docs citations

755 times ranked 19040 citing authors

g-index

#	Article	IF	CITATIONS
1	Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction processes. Chemical Engineering Journal, 2022, 428, 131073.	12.7	14
2	The excess volumes of protic ionic liquids and its significance to their thermodynamic modelling. Fluid Phase Equilibria, 2022, 552, 113277 .	2.5	2
3	On the aggregation of bovine serum albumin. Journal of Molecular Liquids, 2022, 349, 118183.	4.9	6
4	Tailoring the partitioning of proteins using ionic liquids as adjuvants in polymer-polymer aqueous biphasic systems. Green Chemical Engineering, 2022, 3, 328-337.	6.3	7
5	Development of quantitative structure-property relationship to predict the viscosity of deep eutectic solvent for CO2 capture using molecular descriptor. Journal of Molecular Liquids, 2022, 347, 118239.	4.9	20
6	Advances achieved in solid-phase microextraction using polymeric ionic liquids. , 2022, , 347-381.		0
7	Separation of Albumin from Bovine Serum Applying Ionic-Liquid-Based Aqueous Biphasic Systems. Applied Sciences (Switzerland), 2022, 12, 707.	2.5	5
8	Purification of immunoglobulin Y from egg yolk using thermoresponsive aqueous micellar two-phase systems comprising ionic liquids. Separation and Purification Technology, 2022, 288, 120589.	7.9	8
9	Comparison of two computational methods for solvent screening in countercurrent and centrifugal partition chromatography. Journal of Chromatography A, 2022, 1666, 462859.	3.7	6
10	lonic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and \hat{l}^2 -carotene from <i>Phaffia rhodozyma</i> yeast and preparation of biodegradable films. Green Chemistry, 2022, 24, 118-123.	9.0	30
11	Physico-chemical characterization of aqueous solutions of superbase ionic liquids with cellulose dissolution capability. Fluid Phase Equilibria, 2022, 556, 113414.	2.5	15
12	Lysine-PEGylated Cytochrome C with Enhanced Shelf-Life Stability. Biosensors, 2022, 12, 94.	4.7	5
13	Aqueous Biphasic Systems Comprising Natural Organic Acid-Derived Ionic Liquids. Separations, 2022, 9, 46.	2.4	2
14	The impact of size and shape in the performance of hydrotropes: a case-study of alkanediols. Physical Chemistry Chemical Physics, 2022, 24, 7624-7634.	2.8	5
15	lonogels for Biomedical Applications. Materials Horizons, 2022, , 391-425.	0.6	2
16	Octanolâ€"Water Partition Coefficients and Aqueous Solubility Data of Monoterpenoids: Experimental, Modeling, and Environmental Distribution. Industrial & Engineering Chemistry Research, 2022, 61, 3154-3167.	3.7	8
17	Bioâ€Based Solar Energy Harvesting for Onsite Mobile Optical Temperature Sensing in Smart Cities. Advanced Science, 2022, 9, e2104801.	11.2	14
18	Breaking the Structure of Liquid Hydrogenated Alcohols Using Perfluorinated <i>tert</i> -Butanol: A Multitechnique Approach (Infrared, Raman, and X-ray Scattering) Analyzed by DFT and Molecular Dynamics Calculations. Journal of Physical Chemistry B, 2022, 126, 1992-2004.	2.6	8

#	Article	IF	CITATIONS
19	Encapsulated Protic Ionic Liquids as Sustainable Materials for CO ₂ Separation. Industrial & Lamp; Engineering Chemistry Research, 2022, 61, 4046-4057.	3.7	4
20	Selective Separation of Vanillic Acid from Other Lignin-Derived Monomers Using Centrifugal Partition Chromatography: The Effect of pH. ACS Sustainable Chemistry and Engineering, 2022, 10, 4913-4921.	6.7	11
21	Type V deep eutectic solvents: Design and applications. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100612.	5.9	46
22	Pretreatment of Plastic Waste: Removal of Colorants from HDPE Using Biosolvents. Molecules, 2022, 27, 98.	3.8	16
23	Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules, 2022, 27, 2540.	3.8	12
24	Electrolyte Effects on the Amino Acid Solubility in Water: Solubilities of Glycine, <scp> </scp> -Leucine, <scp> </scp> -Phenylalanine, and <scp> </scp> -Aspartic Acid in Salt Solutions of (Na ⁺ , K ⁺ , NH ₄ ⁺)/(Cl ^{â€"} ,) Tj ETQq0 0 0 rgBT /O	verlöck 10) TP50 532 T
25	Liquefying Flavonoids with Terpenoids through Deep Eutectic Solvent Formation. Molecules, 2022, 27, 2649.	3.8	9
26	Solubilities of Amino Acids in Aqueous Solutions of Chloride or Nitrate Salts of Divalent (Mg ²⁺ or Ca ²⁺) Cations. Journal of Chemical & Divalent (Supplementary Control of Chemical & Divalent (Supplementary Control of Chemical & Divalent (Supplementary Control of Chemical & Divalent (Mg <td>1.9</td> <td>3</td>	1.9	3
27	Extensive characterization of choline chloride and its solid–liquid equilibrium with water. Physical Chemistry Chemical Physics, 2022, 24, 14886-14897.	2.8	12
28	Integrated Approach to Extract and Purify Proteins from Honey by Ionic Liquid-Based Three-Phase Partitioning. ACS Sustainable Chemistry and Engineering, 2022, 10, 9275-9281.	6.7	6
29	Uncovering the Use of Fucoxanthin and Phycobiliproteins into Solid Matrices to Increase Their Emission Quantum Yield and Photostability. Applied Sciences (Switzerland), 2022, 12, 5839.	2.5	3
30	Comment on "Structural Study of a Eutectic Solvent Reveals Hydrophobic Segregation and Lack of Hydrogen Bonding between the Components― ACS Sustainable Chemistry and Engineering, 2022, 10, 8669-8670.	6.7	5
31	Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles' Molecular Descriptors. Molecules, 2022, 27, 4489.	3.8	14
32	Using COSMO-RS to Predict Hansen Solubility Parameters. Industrial & Engineering Chemistry Research, 2022, 61, 15631-15638.	3.7	6
33	Factors driving metal partition in ionic liquid-based acidic aqueous biphasic systems. Separation and Purification Technology, 2022, 299, 121720.	7.9	2
34	Towards the purification of IgY from egg yolk by centrifugal partition chromatography. Separation and Purification Technology, 2022, 299, 121697.	7.9	7
35	Extraction of phenolic compounds from rosemary using choline chloride – based Deep Eutectic Solvents. Separation and Purification Technology, 2021, 258, 117975.	7.9	79
36	Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Separation and Purification Technology, 2021, 255, 117538.	7.9	25

#	Article	IF	Citations
37	Recovery of pigments from Ulva rigida. Separation and Purification Technology, 2021, 255, 117723.	7.9	15
38	Propranolol resolution using enantioselective biphasic systems. Separation and Purification Technology, 2021, 254, 117682.	7.9	15
39	Economic analysis of the production and recovery of green fluorescent protein using ATPS-based bioprocesses. Separation and Purification Technology, 2021, 254, 117595.	7.9	16
40	The role of ionic vs. non-ionic excipients in APIs-based eutectic systems. European Journal of Pharmaceutical Sciences, 2021, 156, 105583.	4.0	10
41	Wood delignification with aqueous solutions of deep eutectic solvents. Industrial Crops and Products, 2021, 160, 113128.	5.2	42
42	The impact of oligomeric anions on the speciation of protic ionic liquids. Fluid Phase Equilibria, 2021, 531, 112919.	2.5	7
43	Purification of green fluorescent protein using fast centrifugal partition chromatography. Separation and Purification Technology, 2021, 257, 117648.	7.9	5
44	lonic liquids as entrainers for terpenes fractionation and other relevant separation problems. Journal of Molecular Liquids, 2021, 323, 114647.	4.9	14
45	Nucleophilic degradation of diazinon in thermoreversible polymer–polymer aqueous biphasic systems. Physical Chemistry Chemical Physics, 2021, 23, 4133-4140.	2.8	0
46	Solvent extraction in extended hydrogen bonded fluids – separation of Pt(<scp>iv</scp>) from Pd(<scp>ii</scp>) using TOPO-based type V DES. Green Chemistry, 2021, 23, 4540-4550.	9.0	16
47	The impact of the counterion in the performance of ionic hydrotropes. Chemical Communications, 2021, 57, 2951-2954.	4.1	12
48	Using coarse-grained molecular dynamics to understand the effect of ionic liquids on the aggregation of Pluronic copolymer solutions. Physical Chemistry Chemical Physics, 2021, 23, 5824-5833.	2.8	17
49	Recovery of Chlorophyll <i>a</i> Derivative from <i>Spirulina maxima</i> : Its Purification and Photosensitizing Potential. ACS Sustainable Chemistry and Engineering, 2021, 9, 1772-1780.	6.7	20
50	Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chemistry, 2021, 23, 3683-3692.	9.0	16
51	Oneâ€Step Allâ€Aqueous Interfacial Assembly of Robust Membranes for Longâ€Term Encapsulation and Culture of Adherent Stem/Stromal Cells. Advanced Healthcare Materials, 2021, 10, e2100266.	7.6	13
52	Selective Sequential Recovery of Zinc and Copper from Acid Mine Drainage. ACS Sustainable Chemistry and Engineering, 2021, 9, 3647-3657.	6.7	16
53	Sustainable Strategy Based on Induced Precipitation for the Purification of Phycobiliproteins. ACS Sustainable Chemistry and Engineering, 2021, 9, 3942-3954.	6.7	16
54	Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends in Biotechnology, 2021, 39, 1131-1143.	9.3	19

#	Article	IF	Citations
55	Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Scientific Reports, 2021, 11, 9099.	3.3	21
56	Gaseous hetero dimers of perfluoro tert-butyl alcohol with hydrogenated alcohols by infrared spectroscopy and quantum DFT calculations. Chemical Physics, 2021, 544, 111110.	1.9	4
57	Enhancing Artemisinin Solubility in Aqueous Solutions: Searching for Hydrotropes based on Ionic Liquids. Fluid Phase Equilibria, 2021, 534, 112961.	2.5	11
58	Sustainable liquid supports for laccase immobilization and reuse: Degradation of dyes in aqueous biphasic systems. Biotechnology and Bioengineering, 2021, 118, 2514-2523.	3.3	10
59	Infinite Dilution Activity Coefficients in the Smectic and Isotropic Phases of Tetrafluoroborate-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2587-2596.	1.9	5
60	Extraction and Fractionation of Pigments from <i>Saccharina latissima</i> (Linnaeus, 2006) Using an lonic Liquid + Oil + Water System. ACS Sustainable Chemistry and Engineering, 2021, 9, 6599-6612.	6.7	28
61	A HNO ₃ â€Responsive Aqueous Biphasic System for Metal Separation: Application towards Ce ^{IV} Recovery. ChemSusChem, 2021, 14, 3018-3026.	6.8	8
62	Engineering Cytochrome C with Quantum Dots and Ionic Liquids: A Win-Win Strategy for Protein Packaging against Multiple Stresses. ACS Sustainable Chemistry and Engineering, 2021, 9, 8327-8335.	6.7	11
63	Cholinium-based ionic liquids as bioinspired hydrotropes to tackle solubility challenges in drug formulation. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 86-92.	4.3	28
64	Selective recovery and purification of carotenoids and fatty acids from Rhodotorula glutinis using mixtures of biosolvents. Separation and Purification Technology, 2021, 266, 118548.	7.9	37
65	Toward a Critical Evaluation of DES-Based Organic Biphasic Systems: Are Deep Eutectic Solvents so Critical?. ACS Sustainable Chemistry and Engineering, 2021, 9, 9707-9716.	6.7	12
66	Using COSMO-RS to Predict Solvatochromic Parameters for Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 10240-10249.	6.7	21
67	Development of a robust soft-SAFT model for protic ionic liquids using new high-pressure density data. Fluid Phase Equilibria, 2021, 539, 113036.	2.5	10
68	Integrated Biocatalytic Platform Based on Aqueous Biphasic Systems for the Sustainable Oligomerization of Rutin. ACS Sustainable Chemistry and Engineering, 2021, 9, 9941-9950.	6.7	11
69	Valorization of Spent Coffee by Caffeine Extraction Using Aqueous Solutions of Cholinium-Based Ionic Liquids. Sustainability, 2021, 13, 7509.	3.2	9
70	Differences on the impact of water on the deep eutectic solvents betaine/urea and choline/urea. Journal of Chemical Physics, 2021, 155, 034501.	3.0	19
71	Integrated Production and Separation of Furfural Using an Acidic-Based Aqueous Biphasic System. ACS Sustainable Chemistry and Engineering, 2021, 9, 12205-12212.	6.7	3
72	Amino-acid-based chiral ionic liquids characterization and application in aqueous biphasic systems. Fluid Phase Equilibria, 2021, 542-543, 113091.	2.5	10

#	Article	IF	Citations
73	The structure of liquid perfluoro Tert-Butanol using Infrared, Raman and X-Ray scattering analyzed by quantum DFT calculations and molecular Dynamics. Chemical Physics Letters, 2021, 779, 138844.	2.6	3
74	Solid-liquid phase behavior of eutectic solvents containing sugar alcohols. Journal of Molecular Liquids, 2021, 337, 116392.	4.9	12
75	Aqueous solutions of organic acids as effective solvents for levodopa extraction from Mucuna pruriens seeds. Separation and Purification Technology, 2021, 274, 119084.	7.9	8
76	Unveiling the phase behavior of C _i E _j non-ionic surfactants in water through coarse-grained molecular dynamics simulations. Soft Matter, 2021, 17, 5183-5196.	2.7	8
77	Non-Ideality in Thymol + Menthol Type V Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 2203-2211.	6.7	72
78	Uncovering the potential of aqueous solutions of deep eutectic solvents on the extraction and purification of collagen type I from Atlantic codfish (<i>Gadus morhua</i>). Green Chemistry, 2021, 23, 8940-8948.	9.0	20
79	Opposite Effects Induced by Cholinium-Based Ionic Liquid Electrolytes in the Formation of Aqueous Biphasic Systems Comprising Polyethylene Glycol and Sodium Polyacrylate. Molecules, 2021, 26, 6612.	3.8	1
80	Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16073-16081.	6.7	23
81	Synthesis of Purine-Based Ionic Liquids and Their Applications. Molecules, 2021, 26, 6958.	3.8	4
82	Chlorophylls Extraction from Spinach Leaves Using Aqueous Solutions of Surface-Active Ionic Liquids. Sustainable Chemistry, 2021, 2, 764-777.	4.7	6
83	Extraction and purification of violacein from <i>Yarrowia lipolytica</i> cells using aqueous solutions of surfactants. Journal of Chemical Technology and Biotechnology, 2020, 95, 1126-1134.	3.2	20
84	Understanding the role of the hydrogen bond donor of the deep eutectic solvents in the formation of the aqueous biphasic systems. Fluid Phase Equilibria, 2020, 503, 112319.	2.5	26
85	Aqueous Two-Phase Systems. , 2020, , 157-182.		16
86	Separation of benzene from methylcycloalkanes by extractive distillation with cyano-based ionic liquids: Experimental and CPA EoS modelling. Separation and Purification Technology, 2020, 234, 116128.	7.9	18
87	Study of fame production from waste cooking oil: Operation in batch and continuous regime with regeneration of enzyme catalyst. Energy Reports, 2020, 6, 751-756.	5.1	2
88	Understanding the thermal behaviour of blends of biodiesel and diesel: Phase behaviour of binary mixtures of alkanes and FAMEs. Fuel, 2020, 262, 116488.	6.4	5
89	Unravelling the interactions between biomedical thermoresponsive polymer and biocompatible ionic liquids. Journal of Molecular Liquids, 2020, 300, 112362.	4.9	10
90	Distinct roles of salt cations and anions upon the salting-out of electro-positive albumin. Journal of Molecular Liquids, 2020, 301, 112409.	4.9	7

#	Article	IF	Citations
91	Uncovering the potentialities of protic ionic liquids based on alkanolammonium and carboxylate ions and their aqueous solutions as non-derivatizing solvents of Kraft lignin. Industrial Crops and Products, 2020, 143, 111866.	5.2	16
92	Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior. ChemSusChem, 2020, 13, 784-790.	6.8	63
93	Experimental solubility and density studies on aqueous solutions of quaternary ammonium halides, and thermodynamic modelling for melting enthalpy estimations. Journal of Molecular Liquids, 2020, 300, 112281.	4.9	15
94	Critical aspects of membrane-free aqueous battery based on two immiscible neutral electrolytes. Energy Storage Materials, 2020, 26, 400-407.	18.0	28
95	The Perspective of Cooperative Hydrotropy on the Solubility in Aqueous Solutions of Cyrene. Industrial & Engineering Chemistry Research, 2020, 59, 18649-18658.	3.7	14
96	Physical properties and solid-liquid equilibria for hexafluorophosphate-based ionic liquid ternary mixtures and their corresponding subsystems. Journal of Molecular Liquids, 2020, 316, 113742.	4.9	4
97	Using COSMO-RS in the Design of Deep Eutectic Solvents for the Extraction of Antioxidants from Rosemary. ACS Sustainable Chemistry and Engineering, 2020, 8, 12132-12141.	6.7	65
98	Selective Separation of Manganese, Cobalt, and Nickel in a Fully Aqueous System. ACS Sustainable Chemistry and Engineering, 2020, 8, 12260-12269.	6.7	18
99	Protein Cohabitation: Improving the Photochemical Stability of R-Phycoerythrin in the Solid State. Journal of Physical Chemistry Letters, 2020, 11, 6249-6255.	4.6	14
100	Understanding the Formation of Deep Eutectic Solvents: Betaine as a Universal Hydrogen Bond Acceptor. ChemSusChem, 2020, 13, 4916-4921.	6.8	68
101	Encapsulated Aminoâ€Acidâ€Based Ionic Liquids for CO ₂ Capture. European Journal of Inorganic Chemistry, 2020, 2020, 3158-3166.	2.0	19
102	Development of a Microfluidic Platform for R-Phycoerythrin Purification Using an Aqueous Micellar Two-Phase System. ACS Sustainable Chemistry and Engineering, 2020, 8, 17097-17105.	6.7	11
103	The role of carboxyl groups upon the precipitation of albumin at low pH. Journal of Molecular Liquids, 2020, 319, 114206.	4.9	4
104	Integrated Leaching and Separation of Metals Using Mixtures of Organic Acids and Ionic Liquids. Molecules, 2020, 25, 5570.	3.8	8
105	The influence of zwitterions on the partition of biomolecules in aqueous biphasic systems. Separation and Purification Technology, 2020, 253, 117537.	7.9	6
106	Theoretically consistent calculation of viscous activation parameters through the Eyring equation and their interpretation. Fluid Phase Equilibria, 2020, 522, 112774.	2.5	7
107	Experimental and CPA EoS Description of the Key Components in the BTX Separation from Gasolines by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2020, 59, 15058-15068.	3.7	8
108	Unravelling the Interactions between Surface-Active Ionic Liquids and Triblock Copolymers for the Design of Thermal Responsive Systems. Journal of Physical Chemistry B, 2020, 124, 7046-7058.	2.6	12

#	Article	IF	Citations
109	Separation of mandelic acid enantiomers using solid-liquid biphasic systems with chiral ionic liquids. Separation and Purification Technology, 2020, 252, 117468.	7.9	13
110	Using coarse-grained molecular dynamics to rationalize biomolecule solubilization mechanisms in ionic liquid-based colloidal systems. Physical Chemistry Chemical Physics, 2020, 22, 24771-24783.	2.8	9
111	Solubility Enhancement of Hydrophobic Substances in Water/Cyrene Mixtures: A Computational Study. Industrial & Computational Study. Industrial & Computational Study.	3.7	14
112	Eutectic Mixtures Based on Polyalcohols as Sustainable Solvents: Screening and Characterization. ACS Sustainable Chemistry and Engineering, 2020, 8, 15317-15326.	6.7	29
113	Towards the differential diagnosis of prostate cancer by the pre-treatment of human urine using ionic liquids. Scientific Reports, 2020, 10, 14931.	3.3	11
114	Investigation of Kraft Lignin Solubility in Protic Ionic Liquids and Their Aqueous Solutions. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 18193-18202.	3.7	15
115	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	3.8	99
116	Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 18577-18589.	6.7	48
117	Integrative platform for the selective recovery of intracellular carotenoids and lipids from <i>Rhodotorula glutinis</i> CCT-2186 yeast using mixtures of bio-based solvents. Green Chemistry, 2020, 22, 8478-8494.	9.0	31
118	Unveiling the mechanism of hydrotropy: evidence for water-mediated aggregation of hydrotropes around the solute. Chemical Communications, 2020, 56, 7143-7146.	4.1	40
119	Instantaneous fibrillation of egg white proteome with ionic liquid and macromolecular crowding. Communications Materials, 2020, 1 , .	6.9	7
120	Insights on the Extraction Performance of Alkanediols and Glycerol: Using Juglans regia L. Leaves as a Source of Bioactive Compounds. Molecules, 2020, 25, 2497.	3.8	13
121	Environmentally friendly luminescent solar concentrators based on an optically efficient and stable green fluorescent protein. Green Chemistry, 2020, 22, 4943-4951.	9.0	21
122	Neochloris oleoabundans biorefinery: Integration of cell disruption and purification steps using aqueous biphasic systems-based in surface-active ionic liquids. Chemical Engineering Journal, 2020, 399, 125683.	12.7	13
123	Glycerol Ethers as Hydrotropes and Their Use to Enhance the Solubility of Phenolic Acids in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5742-5749.	6.7	35
124	Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green Chemistry, 2020, 22, 2810-2820.	9.0	67
125	The cation effect on the solubility of glycylglycine and N-acetylglycine in aqueous solution: Experimental and molecular dynamics studies. Journal of Molecular Liquids, 2020, 310, 113044.	4.9	2
126	High pressure density of tricyanomethanide-based ionic liquids: Experimental and PC-SAFT modelling. Fluid Phase Equilibria, 2020, 520, 112652.	2.5	4

#	Article	IF	CITATIONS
127	Solid-liquid phase equilibrium of trans-cinnamic acid, p-coumaric acid and ferulic acid in water and organic solvents: Experimental and modelling studies. Fluid Phase Equilibria, 2020, 521, 112747.	2.5	14
128	Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of \hat{l}^2 -O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chemistry, 2020, 22, 2474-2487.	9.0	82
129	Isobaric vapor-liquid equilibrium of waterÂ+ glymes binary mixtures: Experimental measurements and molecular thermodynamic modelling. Fluid Phase Equilibria, 2020, 513, 112547.	2.5	9
130	Modeling asphaltene precipitation in Algerian oilfields with the CPA EoS. Journal of Petroleum Science and Engineering, 2020, 190, 107115.	4.2	7
131	Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food and Chemical Toxicology, 2020, 137, 111189.	3.6	25
132	lonic Liquid-Mediated Recovery of Carotenoids from the <i>Bactris gasipaes</i> Fruit Waste and Their Application in Food-Packaging Chitosan Films. ACS Sustainable Chemistry and Engineering, 2020, 8, 4085-4095.	6.7	43
133	Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components. Sustainability, 2020, 12, 3358.	3.2	12
134	Liquefying Compounds by Forming Deep Eutectic Solvents: A Case Study for Organic Acids and Alcohols. Journal of Physical Chemistry B, 2020, 124, 4174-4184.	2.6	25
135	Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations. Journal of Colloid and Interface Science, 2020, 574, 324-336.	9.4	28
136	Enhanced Extraction of Levodopa from <i>Mucuna pruriens</i> Seeds Using Aqueous Solutions of Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 6682-6689.	6.7	12
137	Aqueous two-phase systems: Towards novel and more disruptive applications. Fluid Phase Equilibria, 2020, 505, 112341.	2.5	75
138	Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture. Fluid Phase Equilibria, 2020, 518, 112621.	2.5	23
139	Potential Threats of Ionic Liquids to the Environment and Ecosphere. , 2020, , 1-17.		1
140	Insights into the Nature of Eutectic and Deep Eutectic Mixtures. Journal of Solution Chemistry, 2019, 48, 962-982.	1.2	603
141	CO2 influence on asphaltene precipitation. Journal of Supercritical Fluids, 2019, 143, 24-31.	3.2	27
142	Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 21224-21236.	3.1	33
143	Use of Ionic Liquids as Cosurfactants in Mixed Aqueous Micellar Two-Phase Systems to Improve the Simultaneous Separation of Immunoglobulin G and Human Serum Albumin from Expired Human Plasma. ACS Sustainable Chemistry and Engineering, 2019, 7, 15102-15113.	6.7	21
144	Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chemical Communications, 2019, 55, 10253-10256.	4.1	272

#	Article	IF	CITATIONS
145	Recovery of Syringic Acid from Industrial Food Waste with Aqueous Solutions of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 14143-14152.	6.7	17
146	Thermodynamic characterization of deep eutectic solvents at high pressures. Fluid Phase Equilibria, 2019, 500, 112249.	2.5	34
147	Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography. Green Chemistry, 2019, 21, 5501-5506.	9.0	10
148	Surface crystallization of ionic liquid crystals. Physical Chemistry Chemical Physics, 2019, 21, 17792-17800.	2.8	6
149	What a difference a methyl group makes $\hat{a}\in$ probing choline $\hat{a}\in$ urea molecular interactions through urea structure modification. Physical Chemistry Chemical Physics, 2019, 21, 18278-18289.	2.8	24
150	Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chemical Communications, 2019, 55, 8643-8646.	4.1	10
151	Modeling of Hydrate Dissociation Curves with a Modified Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2019, 58, 14476-14487.	3.7	4
152	The Role of Charge Transfer in the Formation of Type I Deep Eutectic Solvent-Analogous Ionic Liquid Mixtures. Molecules, 2019, 24, 3687.	3.8	21
153	Solid–Liquid Equilibria for Hexafluorophosphate-Based Ionic Liquid Quaternary Mixtures and Their Corresponding Subsystems. Journal of Physical Chemistry B, 2019, 123, 8954-8969.	2.6	3
154	Modeling Hydrate Dissociation Curves in the Presence of Hydrate Inhibitors with a Modified CPA EoS. Industrial & Engineering Chemistry Research, 2019, 58, 19239-19250.	3.7	6
155	High-Pressure Density of Bis(1-alkyl-3-methylimidazolium) Tetraisothiocyanatocobaltate Ionic Liquids: Experimental and PC-SAFT with Volume-Shift Modeling. Journal of Chemical & Engineering Data, 2019, 64, 4827-4833.	1.9	3
156	Application of Ionic Liquids in Separation and Fractionation Processes., 2019,, 637-665.		1
157	Protic Ionic Liquids as Cell-Disrupting Agents for the Recovery of Intracellular Carotenoids from Yeast <i>Rhodotorula glutinis</i> CCT-2186. ACS Sustainable Chemistry and Engineering, 2019, 7, 16765-16776.	6.7	53
158	Ion speciation: a key for the understanding of the solution properties of ionic liquid mixtures. Physical Chemistry Chemical Physics, 2019, 21, 21626-21632.	2.8	11
159	Greener Terpene–Terpene Eutectic Mixtures as Hydrophobic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 17414-17423.	6.7	85
160	Sustainable strategies based on glycine–betaine analogue ionic liquids for the recovery of monoclonal antibodies from cell culture supernatants. Green Chemistry, 2019, 21, 5671-5682.	9.0	31
161	Toward Modeling the Aromatic/Aliphatic Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids Using CPA EoS. Industrial & Engineering Chemistry Research, 2019, 58, 19681-19692.	3.7	11
162	Synthesis and Characterization of Surfaceâ€Active Ionic Liquids Used in the Disruption of <i>Escherichia Coli</i> Cells. ChemPhysChem, 2019, 20, 727-735.	2.1	22

#	Article	lF	Citations
163	Hydrotropy and Cosolvency in Lignin Solubilization with Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, , .	6.7	16
164	Simultaneous Separation of Antioxidants and Carbohydrates From Food Wastes Using Aqueous Biphasic Systems Formed by Cholinium-Derived Ionic Liquids. Frontiers in Chemistry, 2019, 7, 459.	3.6	15
165	Solvent and temperature effects on the solubility of syringic, vanillic or veratric acids: Experimental, modeling and solid phase studies. Journal of Molecular Liquids, 2019, 289, 111089.	4.9	24
166	Laccase Activation in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 11806-11814.	6.7	95
167	A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride. Physical Chemistry Chemical Physics, 2019, 21, 15046-15061.	2.8	32
168	Using COSMO-RS to design choline chloride pharmaceutical eutectic solvents. Fluid Phase Equilibria, 2019, 497, 71-78.	2.5	64
169	Acetonitrile as adjuvant to tune polyethylene glycol + K3PO4 aqueous two-phase systems and its effect on phenolic compounds partition. Separation and Purification Technology, 2019, 223, 41-48.	7.9	28
170	Can cholinium chloride form eutectic solvents with organic chloride-based salts?. Fluid Phase Equilibria, 2019, 493, 120-126.	2.5	16
171	Using Volume Shifts To Improve the Description of Speed of Sound and Other Derivative Properties with Cubic Equations of State. Industrial & Engineering Chemistry Research, 2019, 58, 8856-8870.	3.7	2
172	Synthesis and characterization of analogues of glycine-betaine ionic liquids and their use in the formation of aqueous biphasic systems. Fluid Phase Equilibria, 2019, 494, 239-245.	2.5	14
173	Aquatic Toxicology of Ionic Liquids (ILs). , 2019, , 1-18.		7
174	Integrated Extraction-Preservation Strategies for RNA Using Biobased Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 9439-9448.	6.7	20
175	Synthesis and characterization of chiral ionic liquids based on quinine, l-proline and l-valine for enantiomeric recognition. Journal of Molecular Liquids, 2019, 283, 410-416.	4.9	24
176	Cytotoxicity profiling of deep eutectic solvents to human skin cells. Scientific Reports, 2019, 9, 3932.	3.3	93
177	Mechanisms of phase separation in temperature-responsive acidic aqueous biphasic systems. Physical Chemistry Chemical Physics, 2019, 21, 7462-7473.	2.8	23
178	R-phycoerythrin extraction and purification from fresh <i>Gracilaria</i> sp. using thermo-responsive systems. Green Chemistry, 2019, 21, 3816-3826.	9.0	26
179	Impact of water on the [C4C1im][Ac] ability for the CO2/CH4 separation. Journal of CO2 Utilization, 2019, 31, 115-123.	6.8	8
180	Revisiting the methodology for asphaltenes precipitation. Journal of Petroleum Science and Engineering, 2019, 178, 778-786.	4.2	16

#	Article	IF	Citations
181	Integration of aqueous (micellar) two-phase systems on the proteins separation. BMC Chemical Engineering, 2019, $1,\ldots$	3.4	14
182	A Statistical Associating Fluid Theory Perspective of the Modeling of Compounds Containing Ethylene Oxide Groups. Industrial & Engineering Chemistry Research, 2019, 58, 3562-3582.	3.7	8
183	3. Aqueous biphasic systems formed by cholinium-based ionic liquids and mixtures of polymers. , 2019, , 29-54.		1
184	Understanding the adsorption of ionic liquids onto zeolite ZSM-5 from aqueous solution: experimental and computational modelling. Physical Chemistry Chemical Physics, 2019, 21, 24518-24526.	2.8	9
185	Controlling thelâ€asparaginase extraction and purification by the appropriate selection of polymer/saltâ€based aqueous biphasic systems. Journal of Chemical Technology and Biotechnology, 2019, 95, 1016.	3.2	6
186	An integrated process combining the reaction and purification of PEGylated proteins. Green Chemistry, 2019, 21, 6407-6418.	9.0	5
187	Solvatochromism as a new tool to distinguish structurally similar compounds. Journal of Molecular Liquids, 2019, 274, 740-745.	4.9	8
188	Binary Mixtures of Ionic Liquids in Aqueous Solution: Towards an Understanding of Their Salting-In/Salting-Out Phenomena. Journal of Solution Chemistry, 2019, 48, 983-991.	1.2	6
189	Sustainable Liquid Luminescent Solar Concentrators. Advanced Sustainable Systems, 2019, 3, 1800134.	5.3	30
190	Prediction of solid solute solubility in supercritical CO2 with cosolvents using the CPA EoS. Fluid Phase Equilibria, 2019, 482, 1-10.	2.5	18
191	Understanding the effect of ionic liquids as adjuvants in the partition of biomolecules in aqueous two-phase systems formed by polymers and weak salting-out agents. Biochemical Engineering Journal, 2019, 141, 239-246.	3.6	40
192	Synergistic Aqueous Biphasic Systems: A New Paradigm for the "One-Pot―Hydrometallurgical Recovery of Critical Metals. ACS Sustainable Chemistry and Engineering, 2019, 7, 1769-1777.	6.7	28
193	Sustainable Extraction and Separation of Rhenium and Molybdenum from Model Copper Mining Effluents Using a Polymeric Aqueous Two-Phase System. ACS Sustainable Chemistry and Engineering, 2019, 7, 1778-1785.	6.7	11
194	Immobilization of Ionic Liquids, Types of Materials, and Applications. , 2019, , 1-12.		3
195	A simple approach for the determination and characterization of ternary phase diagrams of aqueous two-phase systems composed of water, polyethylene glycol and sodium carbonate. Chemical Engineering Education, 2019, 53, 112-120.	0.2	1
196	Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L Industrial Crops and Products, 2018, 115, 261-271.	5.2	100
197	Mechanisms ruling the partition of solutes in ionic-liquid-based aqueous biphasic systems – the multiple effects of ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 8411-8422.	2.8	13
198	Mechanism of ionic-liquid-based acidic aqueous biphasic system formation. Physical Chemistry Chemical Physics, 2018, 20, 9838-9846.	2.8	26

#	Article	IF	CITATIONS
199	Measurement and Modeling of Isobaric Vapor–Liquid Equilibrium of Water + Glycols. Journal of Chemical & Che	1.9	13
200	Economic evaluation of the primary recovery of tetracycline with traditional and novel aqueous two-phase systems. Separation and Purification Technology, 2018, 203, 178-184.	7.9	17
201	Aqueous biphasic systems in the separation of food colorants. Biochemistry and Molecular Biology Education, 2018, 46, 390-397.	1.2	8
202	Improving the cold flow behavior of methyl biodiesel by blending it with ethyl esters. Fuel, 2018, 226, 87-92.	6.4	20
203	Separation of phenolic compounds by centrifugal partition chromatography. Green Chemistry, 2018, 20, 1906-1916.	9.0	29
204	Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts. Journal of Chemical Physics, 2018, 148, .	3.0	16
205	Separation of immunoglobulin G using aqueous biphasic systems composed of choliniumâ€based ionic liquids and poly(propylene glycol). Journal of Chemical Technology and Biotechnology, 2018, 93, 1931-1939.	3.2	32
206	Designer solvent ability of alcohols in aqueous biphasic systems composed of deep eutectic solvents and potassium phosphate. Separation and Purification Technology, 2018, 200, 84-93.	7.9	46
207	Recovery of Nonsteroidal Anti-Inflammatory Drugs from Wastes Using Ionic-Liquid-Based Three-Phase Partitioning Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 4574-4585.	6.7	18
208	An integrated process for enzymatic catalysis allowing product recovery and enzyme reuse by applying thermoreversible aqueous biphasic systems. Green Chemistry, 2018, 20, 1218-1223.	9.0	47
209	Extraction of recombinant proteins from <scp><i>Escherichia coli</i></scp> by cell disruption with aqueous solutions of surfaceâ€active compounds. Journal of Chemical Technology and Biotechnology, 2018, 93, 1864-1870.	3.2	18
210	Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem, 2018, 11, 753-762.	6.8	75
211	Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes. Physical Chemistry Chemical Physics, 2018, 20, 2094-2103.	2.8	68
212	Potential of aqueous twoâ€phase systems for the separation of levodopa from similar biomolecules. Journal of Chemical Technology and Biotechnology, 2018, 93, 1940-1947.	3.2	10
213	Hydrogen bond basicity of ionic liquids and molar entropy of hydration of salts as major descriptors in the formation of aqueous biphasic systems. Physical Chemistry Chemical Physics, 2018, 20, 14234-14241.	2.8	18
214	Solubility of caffeic acid in CO2†+†ethanol: Experimental and predicted data using Cubic Plus Association Equation of State. Journal of Supercritical Fluids, 2018, 138, 238-246.	3.2	14
215	High-pressure solubility of CO2 in glymes. Fuel, 2018, 219, 120-125.	6.4	13
216	Recovery of carotenoids from brown seaweeds using aqueous solutions of surface-active ionic liquids and anionic surfactants. Separation and Purification Technology, 2018, 196, 300-308.	7.9	37

#	Article	IF	Citations
217	Simultaneous extraction and concentration of water pollution tracers using ionic-liquid-based systems. Journal of Chromatography A, 2018, 1559, 69-77.	3.7	27
218	Evaluation of the effect of ionic liquids as adjuvants in polymer-based aqueous biphasic systems using biomolecules as molecular probes. Separation and Purification Technology, 2018, 196, 244-253.	7.9	35
219	<i>In situ</i> purification of periplasmatic Lâ€esparaginase by aqueous two phase systems with ionic liquids (ILs) as adjuvants. Journal of Chemical Technology and Biotechnology, 2018, 93, 1871-1880.	3.2	31
220	Ionic‣iquidâ€Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angewandte Chemie - International Edition, 2018, 57, 1563-1566.	13.8	82
221	lonicâ€Liquidâ€Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angewandte Chemie, 2018, 130, 1579-1582.	2.0	13
222	Cloud Point Extraction of Chlorophylls from Spinach Leaves Using Aqueous Solutions of Nonionic Surfactants. ACS Sustainable Chemistry and Engineering, 2018, 6, 590-599.	6.7	53
223	Solubility of carbon dioxide in encapsulated ionic liquids. Separation and Purification Technology, 2018, 196, 41-46.	7.9	31
224	Aqueous Biphasic Systems Using Chiral Ionic Liquids for the Enantioseparation of Mandelic Acid Enantiomers. Solvent Extraction and Ion Exchange, 2018, 36, 617-631.	2.0	20
225	Understanding the interactions of imidazolium-based ionic liquids with cell membrane models. Physical Chemistry Chemical Physics, 2018, 20, 29764-29777.	2.8	27
226	pH Effect on the Formation of Deep-Eutectic-Solvent-Based Aqueous Two-Phase Systems. Industrial & Engineering Chemistry Research, 2018, 57, 16917-16924.	3.7	27
227	Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids. Critical Reviews in Environmental Science and Technology, 2018, 48, 859-922.	12.8	63
228	Toluene/ <i>n</i> -Heptane Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids: Experimental and CPA EoS Modeling. Industrial & Experimental Experim	3.7	29
229	Thermal Energy Storage and Mechanical Performance of Crude Glycerol Polyurethane Composite Foams Containing Phase Change Materials and Expandable Graphite. Materials, 2018, 11, 1896.	2.9	32
230	Modeling of the Mixture Critical Locus with a Modified Cubic Plus Association (CPA) EoS: Aromatics, Ketones, Ethers, Diethyl Carbonate, and THF. Industrial & Engineering Chemistry Research, 2018, 57, 15857-15868.	3.7	5
231	The antagonist and synergist potential of cholinium-based deep eutectic solvents. Ecotoxicology and Environmental Safety, 2018, 165, 597-602.	6.0	35
232	Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory. Chemosphere, 2018, 212, 890-897.	8.2	62
233	Enhanced separation performance of aqueous biphasic systems formed by carbohydrates and tetraalkylphosphonium- or tetraalkylammonium-based ionic liquids. Green Chemistry, 2018, 20, 2978-2983.	9.0	33
234	Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 8836-8846.	6.7	207

#	Article	IF	CITATIONS
235	A comparative analysis of thermophysical properties correlations for n-paraffins to be used in wax precipitation modeling. Fluid Phase Equilibria, 2018, 472, 172-184.	2.5	6
236	Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals. Chemical Communications, 2018, 54, 8104-8107.	4.1	116
237	The Role of Polyfunctionality in the Formation of [Ch]Cl-Carboxylic Acid-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2018, 57, 11195-11209.	3.7	46
238	Modeling of the Mixture Critical Locus with a Modified Cubic Plus Association Equation of State: Water, Alkanols, Amines, and Alkanes. Industrial & Engineering Chemistry Research, 2018, 57, 10649-10662.	3.7	8
239	Glycineâ€betaine ionic liquid analogues as novel phaseâ€forming components of aqueous biphasic systems. Biotechnology Progress, 2018, 34, 1205-1212.	2.6	16
240	Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (C ₄ mimTfO) and Molecular Solvents: <i>n</i> -Alkyl Alcohols and Water. Journal of Physical Chemistry B, 2018, 122, 6017-6032.	2.6	20
241	Using a Volume Shift in Perturbed-Chain Statistical Associating Fluid Theory To Improve the Description of Speed of Sound and Other Derivative Properties. Industrial & Engineering Chemistry Research, 2018, 57, 11804-11814.	3.7	11
242	Pioneering Use of Ionic Liquidâ€Based Aqueous Biphasic Systems as Membraneâ€Free Batteries. Advanced Science, 2018, 5, 1800576.	11.2	34
243	Aqueous Biphasic Systems Composed of Cholinium Chloride and Polymers as Effective Platforms for the Purification of Recombinant Green Fluorescent Protein. ACS Sustainable Chemistry and Engineering, 2018, 6, 9383-9393.	6.7	33
244	Understanding the fundamentals of acid-induced ionic liquid-based aqueous biphasic system. Physical Chemistry Chemical Physics, 2018, 20, 16477-16484.	2.8	12
245	Design and Characterization of Sugar-Based Deep Eutectic Solvents Using Conductor-like Screening Model for Real Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 10724-10734.	6.7	98
246	Application of Ionic Liquids in Separation and Fractionation Processes. , 2018, , 1-29.		2
247	Exploring alternative solvents for gas processing using the soft-SAFT EoS., 2018, , .		0
248	Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2017, 19, 1850-1854.	9.0	43
249	New measurements and modeling of high pressure thermodynamic properties of glycols. Fluid Phase Equilibria, 2017, 436, 113-123.	2.5	38
250	lonic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews, 2017, 117, 6984-7052.	47.7	689
251	Re-evaluating the CPA EoS for improving critical points and derivative properties description. Fluid Phase Equilibria, 2017, 436, 85-97.	2.5	24
252	Nature of the C2-methylation effect on the properties of imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 5326-5332.	2.8	22

#	Article	IF	CITATIONS
253	Good's buffer ionic liquids as relevant phaseâ€forming components of selfâ€buffered aqueous biphasic systems. Journal of Chemical Technology and Biotechnology, 2017, 92, 2287-2299.	3.2	15
254	Evaluation of the solvent structural effect upon the vapor –liquid equilibrium of [C4C1im][Cl]Â+ alcohols. Fluid Phase Equilibria, 2017, 440, 36-44.	2.5	6
255	Alternative probe for the determination of the hydrogen-bond acidity of ionic liquids and their aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 11011-11016.	2.8	27
256	Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 69-80.	2.5	88
257	Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chemistry, 2017, 19, 2626-2635.	9.0	30
258	Temperature dependency of aqueous biphasic systems: an alternative approach for exploring the differences between Coulombic-dominated salts and ionic liquids. Chemical Communications, 2017, 53, 7298-7301.	4.1	28
259	Switchable (pH-driven) aqueous biphasic systems formed by ionic liquids as integrated production–separation platforms. Green Chemistry, 2017, 19, 2768-2773.	9.0	31
260	Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 15-21.	2.5	105
261	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. Industrial & Engineering Chemistry Research, 2017, 56, 7830-7844.	3.7	18
262	Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Physical Chemistry Chemical Physics, 2017, 19, 17998-18009.	2.8	132
263	Evaluating Cubic Plus Association Equation of State Predictive Capacities: A Study on the Transferability of the Hydroxyl Group Associative Parameters. Industrial & Engineering Chemistry Research, 2017, 56, 7086-7099.	3.7	15
264	Study of the pseudo-ternary aqueous two-phase systems of deep eutectic solvent (choline) Tj ETQq0 0 0 rgBT /C	verlock 10 2.5) Tf 50 302 To
265	Ecotoxicological evaluation of magnetic ionic liquids. Ecotoxicology and Environmental Safety, 2017, 143, 315-321.	6.0	39
266	Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Industrial Crops and Products, 2017, 107, 341-352.	5.2	60
267	Toward an Understanding of the Mechanisms behind the Formation of Liquid–liquid Systems formed by Two Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 3015-3019.	4.6	17
268	Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 4056-4065.	6.7	121
269	Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data. Fluid Phase Equilibria, 2017, 448, 9-14.	2.5	73
270	Characterization and Modeling of the Liquid Phase of Deep Eutectic Solvents Based on Fatty Acids/Alcohols and Choline Chloride. Industrial & Engineering Chemistry Research, 2017, 56, 12192-12202.	3.7	57

#	Article	IF	CITATIONS
271	A Triple Saltingâ€Out Effect is Required for the Formation of Ionicâ€Liquidâ€Based Aqueous Multiphase Systems. Angewandte Chemie - International Edition, 2017, 56, 15058-15062.	13.8	14
272	Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems. Green Chemistry, 2017, 19, 5800-5808.	9.0	18
273	Solid-liquid equilibrium and heat capacity trend in the alkylimidazolium PF6 series. Journal of Molecular Liquids, 2017, 248, 678-687.	4.9	26
274	Impact of Surface Active Ionic Liquids on the Cloud Points of Nonionic Surfactants and the Formation of Aqueous Micellar Two-Phase Systems. Journal of Physical Chemistry B, 2017, 121, 8742-8755.	2.6	45
275	Is It Possible To Create Ternary-like Aqueous Biphasic Systems with Deep Eutectic Solvents?. ACS Sustainable Chemistry and Engineering, 2017, 5, 9402-9411.	6.7	58
276	Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chemistry, 2017, 19, 4900-4911.	9.0	83
277	Lipase production and purification by self-buffering ionic liquid-based aqueous biphasic systems. Process Biochemistry, 2017, 63, 221-228.	3.7	20
278	Primary and secondary aqueous two-phase systems composed of thermo switchable polymers and bio-derived ionic liquids. Journal of Chemical Thermodynamics, 2017, 115, 191-201.	2.0	16
279	Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions. Green Chemistry, 2017, 19, 4012-4016.	9.0	23
280	Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State. Industrial & Equ	3.7	9
281	Improved Prediction of Water Properties and Phase Equilibria with a Modified Cubic Plus Association Equation of State. Industrial & Description of State. In	3.7	21
282	Soft-SAFT Equation of State as a Valuable Tool for the Design of new CO2 Capture Technologies , 2017, , .		1
283	Using Ionic Liquids To Tune the Performance of Aqueous Biphasic Systems Based on Pluronic L-35 for the Purification of Naringin and Rutin. ACS Sustainable Chemistry and Engineering, 2017, 5, 6409-6419.	6.7	27
284	Special Issue on Deep Eutectic Solvents: A foreword. Fluid Phase Equilibria, 2017, 448, 1.	2.5	28
285	Terpenes solubility in water and their environmental distribution. Journal of Molecular Liquids, 2017, 241, 996-1002.	4.9	59
286	Heterologous expression and purification of active Lâ€asparaginase I of <i>Saccharomyces cerevisiae</i> in <i>Escherichia coli</i> host. Biotechnology Progress, 2017, 33, 416-424.	2.6	13
287	Single-step extraction of carotenoids from brown macroalgae using non-ionic surfactants. Separation and Purification Technology, 2017, 172, 268-276.	7.9	34
288	A simple method for preparation of a novel hydrophobic ionic liquid with a per-fluoro-tert-butoxide anion. New Journal of Chemistry, 2017, 41, 47-50.	2.8	6

#	Article	IF	CITATIONS
289	Modeling Biodiesel Production and Purification – Towards a Predictive Tool. Computer Aided Chemical Engineering, 2017, 40, 2881-2886.	0.5	1
290	A Triple Saltingâ€Out Effect is Required for the Formation of Ionicâ€Liquidâ€Based Aqueous Multiphase Systems. Angewandte Chemie, 2017, 129, 15254-15258.	2.0	2
291	Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. Green Chemistry, 2016, 18, 4582-4604.	9.0	52
292	An ionic liquid route to prepare copper sulphide nanocrystals aiming at photocatalytic applications. RSC Advances, 2016, 6, 34521-34528.	3.6	29
293	The effect of n vs. iso isomerization on the thermophysical properties of aromatic and non-aromatic ionic liquids. Fluid Phase Equilibria, 2016, 423, 190-202.	2.5	34
294	Coordination abilities of Good's buffer ionic liquids toward europium(III) ion in aqueous solution. Journal of Chemical Thermodynamics, 2016, 94, 152-159.	2.0	12
295	DFT Study of the Reaction Mechanisms of Carbon Dioxide and its Isoelectronic Molecules CS ₂ and OCS Dissolved in Pyrrolidinium and Imidazolium Acetate Ionic Liquids. Journal of Physical Chemistry B, 2016, 120, 5243-5254.	2.6	15
296	Evaluating the toxicity of biomass derived platform chemicals. Green Chemistry, 2016, 18, 4733-4742.	9.0	32
297	Recovery of capsaicin from Capsicum frutescens by applying aqueous two-phase systems based on acetonitrile and cholinium-based ionic liquids. Chemical Engineering Research and Design, 2016, 112, 103-112.	5.6	35
298	Are Aqueous Biphasic Systems Composed of Deep Eutectic Solvents Ternary or Quaternary Systems?. ACS Sustainable Chemistry and Engineering, 2016, 4, 2881-2886.	6.7	177
299	Dispelling some myths about the CO ₂ solubility in ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 14757-14771.	2.8	85
300	Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions. Green Chemistry, 2016, 18, 4287-4296.	9.0	71
301	Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems. Journal of Biotechnology, 2016, 236, 166-175.	3.8	65
302	A critical assessment of the mechanisms governing the formation of aqueous biphasic systems composed of protic ionic liquids and polyethylene glycol. Physical Chemistry Chemical Physics, 2016, 18, 30009-30019.	2.8	18
303	Toward the Recovery and Reuse of the ABS Phase-Forming Components. Green Chemistry and Sustainable Technology, 2016, , 285-315.	0.7	2
304	Solid–liquid equilibria of binary mixtures of fluorinated ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 25741-25750.	2.8	23
305	New Procedure for Enhancing the Transferability of Statistical Associating Fluid Theory (SAFT) Molecular Parameters: The Role of Derivative Properties. Industrial & Engineering Chemistry Research, 2016, 55, 10011-10024.	3.7	27
306	Fractionation of phenolic compounds from lignin depolymerisation using polymeric aqueous biphasic systems with ionic surfactants as electrolytes. Green Chemistry, 2016, 18, 5569-5579.	9.0	29

#	Article	IF	CITATIONS
307	Densities and Viscosities of Mixtures of Two Ionic Liquids Containing a Common Cation. Journal of Chemical & C	1.9	117
308	Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicology Research, 2016, 5, 1388-1399.	2.1	33
309	Lipase Production and Purification from Fermentation Broth Using Ionic Liquids. , 2016, , 59-97.		7
310	Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems. Scientific Reports, 2016, 6, 20276.	3.3	72
311	Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids. Langmuir, 2016, 32, 6130-6139.	3.5	38
312	Organic-phase biological buffers for biochemical and biological research in organic media. Journal of Molecular Liquids, 2016, 221, 197-205.	4.9	10
313	Solubility and solvation of monosaccharides in ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 19722-19730.	2.8	18
314	Binary mixtures of fatty acid ethyl esters: Solid-liquid equilibrium. Fluid Phase Equilibria, 2016, 427, 1-8.	2.5	24
315	Aqueous solubilities of five N-(diethylaminothiocarbonyl)benzimido derivatives at TÂ=Â298.15ÂK. Chemosphere, 2016, 160, 45-53.	8.2	5
316	Why are some cyano-based ionic liquids better glucose solvents than water? Physical Chemistry Chemical Physics, 2016, 18, 18958-18970.	2.8	13
317	Aqueous biphasic systems composed of ionic liquids and polypropylene glycol: insights into their liquid–liquid demixing mechanisms. Physical Chemistry Chemical Physics, 2016, 18, 20571-20582.	2.8	51
318	Densities, Viscosities, and Refractive Indexes of Good's Buffer Ionic Liquids. Journal of Chemical & Engineering Data, 2016, 61, 2260-2268.	1.9	13
319	Alcohols as molecular probes in ionic liquids: evidence for nanostructuration. Physical Chemistry Chemical Physics, 2016, 18, 19267-19275.	2.8	8
320	High pressure solubility of CH4, N2O and N2 in 1-butyl-3-methylimidazolium dicyanamide: Solubilities, selectivities and soft-SAFT modeling. Journal of Supercritical Fluids, 2016, 110, 56-64.	3.2	38
321	Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: Measurements and COSMO-RS modelling. Fluid Phase Equilibria, 2016, 414, 93-100.	2.5	29
322	(Eco)toxicity and biodegradability of protic ionic liquids. Chemosphere, 2016, 147, 460-466.	8.2	96
323	Selection of Ionic Liquids to be Used as Separation Agents for Terpenes and Terpenoids. ACS Sustainable Chemistry and Engineering, 2016, 4, 548-556.	6.7	49
324	Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Physical Chemistry Chemical Physics, 2016, 18, 8342-8351.	2.8	32

#	Article	IF	Citations
325	Recovery of an antidepressant from pharmaceutical wastes using ionic liquid-based aqueous biphasic systems. Green Chemistry, 2016, 18, 3527-3536.	9.0	35
326	Recovery of ibuprofen from pharmaceutical wastes using ionic liquids. Green Chemistry, 2016, 18, 3749-3757.	9.0	27
327	Modeling the vapor–liquid equilibria and water activity coefficients of alternative refrigerant-absorbent ionic liquid–water pairs for absorption systems. Fluid Phase Equilibria, 2016, 426, 100-109.	2.5	22
328	Alkaloids as Alternative Probes To Characterize the Relative Hydrophobicity of Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 1512-1520.	6.7	48
329	Complexation and molecular modeling studies of europium(III)–gallic acid–amino acid complexes. Journal of Inorganic Biochemistry, 2016, 157, 25-33.	3.5	27
330	Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 2016, 51, 781-791.	3.7	42
331	Modeling of the binodal curve of ionic liquid/salt aqueous systems. Fluid Phase Equilibria, 2016, 426, 10-16.	2.5	10
332	Fatty acids' profiles as indicators of stress induced by of a common herbicide on two marine bivalves species: Cerastoderma edule (Linnaeus, 1758) and Scrobicularia plana (da Costa, 1778). Ecological Indicators, 2016, 63, 209-218.	6.3	61
333	Surface tensions of ionic liquids: Non-regular trend along the number of cyano groups. Fluid Phase Equilibria, 2016, 409, 458-465.	2.5	24
334	Study of the impact of high temperatures and pressures on the equilibrium densities and interfacial tension of the carbon dioxide/water system. Journal of Chemical Thermodynamics, 2016, 93, 404-415.	2.0	69
335	From waterâ€inâ€oil to oilâ€inâ€water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems. Biotechnology Progress, 2015, 31, 1473-1480.	2.6	10
336	The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chemistry, 2015, 17, 3948-3963.	9.0	156
337	Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification. Separation and Purification Technology, 2015, 155, 118-126.	7.9	60
338	Novel aqueous two-phase systems based on tetrahydrofuran and potassium phosphate buffer for purification of lipase. Process Biochemistry, 2015, 50, 1459-1467.	3.7	41
339	Computational and Experimental Study of the Behavior of Cyano-Based Ionic Liquids in Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 1567-1578.	2.6	25
340	Novel Biocompatible and Selfâ€buffering Ionic Liquids for Biopharmaceutical Applications. Chemistry - A European Journal, 2015, 21, 4781-4788.	3.3	96
341	Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state. Fluid Phase Equilibria, 2015, 388, 100-106.	2.5	52
342	Mutual solubilities between water and non-aromatic sulfonium-, ammonium- and phosphonium-hydrophobic ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 4569-4577.	2.8	58

#	Article	IF	CITATIONS
343	Thiols׳ extraction from "jet-fuel―assisted by ionic liquids in hollow fibre membrane contactors. Journal of Membrane Science, 2015, 477, 65-73.	8.2	9
344	One-step extraction and concentration of estrogens for an adequate monitoring of wastewater using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2015, 17, 2570-2579.	9.0	46
345	Ionic liquids as a novel class of electrolytes in polymeric aqueous biphasic systems. Process Biochemistry, 2015, 50, 661-668.	3.7	34
346	Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2015, 91, 194-203.	2.0	45
347	Environmental safety of cholinium-based ionic liquids: assessing structure–ecotoxicity relationships. Green Chemistry, 2015, 17, 4657-4668.	9.0	115
348	Understanding the cation specific effects on the aqueous solubility of amino acids: from mono to polyvalent cations. RSC Advances, 2015, 5, 15024-15034.	3.6	9
349	Role of the chemical structure of ionic liquids in their ecotoxicity and reactivity towards Fenton oxidation. Separation and Purification Technology, 2015, 150, 252-256.	7.9	36
350	Vapor–Liquid Equilibria of Imidazolium Ionic Liquids with Cyano Containing Anions with Water and Ethanol. Journal of Physical Chemistry B, 2015, 119, 10287-10303.	2.6	52
351	Effect of the Methylation and N–H Acidic Group on the Physicochemical Properties of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 8781-8792.	2.6	23
352	Hydrogen-bond acidity of ionic liquids: an extended scale. Physical Chemistry Chemical Physics, 2015, 17, 18980-18990.	2.8	99
353	Enhanced extraction of proteins using choliniumâ€based ionic liquids as phaseâ€forming components of aqueous biphasic systems. Biotechnology Journal, 2015, 10, 1457-1466.	3.5	92
354	Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of a herbicide (PrimextraÂ $^{\circ}$ Gold TZ) and its active ingredient (S-metolachlor). Ecological Indicators, 2015, 53, 220-230.	6.3	54
355	Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochemistry, 2015, 50, 1158-1166.	3.7	65
356	Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids. Journal of Biotechnology, 2015, 206, 17-25.	3.8	75
357	Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microbial Cell Factories, 2015, 14, 14.	4.0	57
358	Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilibria, 2015, 400, 103-113.	2.5	67
359	Solubility of greenhouse and acid gases on the [C4mim][MeSO4] ionic liquid for gas separation and CO2 conversion. Catalysis Today, 2015, 255, 87-96.	4.4	34
360	Lipase purification using ionic liquids as adjuvants in aqueous two-phase systems. Green Chemistry, 2015, 17, 3026-3034.	9.0	78

#	Article	IF	CITATIONS
361	Aqueous Biphasic Systems Composed of Ionic Liquids and Acetate-Based Salts: Phase Diagrams, Densities, and Viscosities. Journal of Chemical & Engineering Data, 2015, 60, 1674-1682.	1.9	36
362	Controlling the Formation of Ionicâ€Liquidâ€based Aqueous Biphasic Systems by Changing the Hydrogenâ€Bonding Ability of Polyethylene Glycol End Groups. ChemPhysChem, 2015, 16, 2219-2225.	2.1	41
363	Comprehensive study on the impact of the cation alkyl side chain length on the solubility of water in ionic liquids. Journal of Molecular Liquids, 2015, 210, 264-271.	4.9	42
364	Thermophysical Properties of Two Ammonium-Based Protic Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 703-717.	1.2	20
365	Ecotoxicity of Cholinium-Based Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 3398-3404.	6.7	119
366	Evaluating Self-buffering Ionic Liquids for Biotechnological Applications. ACS Sustainable Chemistry and Engineering, 2015, 3, 3420-3428.	6.7	46
367	Contact angles and wettability of ionic liquids on polar and non-polar surfaces. Physical Chemistry Chemical Physics, 2015, 17, 31653-31661.	2.8	77
368	Enhancing the Antioxidant Characteristics of Phenolic Acids by Their Conversion into Cholinium Salts. ACS Sustainable Chemistry and Engineering, 2015, 3, 2558-2565.	6.7	54
369	Thermophysical Properties of Glycols and Glymes. Journal of Chemical & Engineering Data, 2015, 60, 3721-3737.	1.9	62
370	Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory. Physical Chemistry Chemical Physics, 2015, 17, 32044-32052.	2.8	22
371	Evaluation of the GROMOS 56A _{CARBO} Force Field for the Calculation of Structural, Volumetric, and Dynamic Properties of Aqueous Glucose Systems. Journal of Physical Chemistry B, 2015, 119, 15310-15319.	2.6	14
372	Ionic liquidâ€based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds. Biotechnology Progress, 2015, 31, 70-77.	2.6	35
373	CHAPTER 8. Ionic Liquids as Efficient Tools for the Purification of Biomolecules and Bioproducts from Natural Sources. RSC Green Chemistry, 2015, , 227-257.	0.1	5
374	Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains. Journal of Chemical Physics, 2014, 141, 134502.	3.0	41
375	lonic liquid recovery alternatives in ionic liquidâ€based threeâ€phase partitioning (ILTPP). AICHE Journal, 2014, 60, 3577-3586.	3.6	21
376	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	3.2	53
377	Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. Journal of Supercritical Fluids, 2014, 92, 231-241.	3.2	40
378	Effect of ionic liquids as adjuvants on PEG-based ABS formation and the extraction of two probe dyes. Fluid Phase Equilibria, 2014, 375, 30-36.	2.5	67

#	Article	IF	CITATIONS
379	lonic liquids as additives to enhance the extraction of antioxidants in aqueous two-phase systems. Separation and Purification Technology, 2014, 128, 1-10.	7.9	116
380	Assessing the activity coefficients of water in cholinium-based ionic liquids: Experimental measurements and COSMO-RS modeling. Fluid Phase Equilibria, 2014, 361, 16-22.	2.5	68
381	Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 2014, 102, 48-54.	6.0	185
382	Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 6593.	2.8	218
383	lonic liquids for thiols desulfurization: Experimental liquid–liquid equilibrium and COSMO-RS description. Fuel, 2014, 128, 314-329.	6.4	57
384	Inclusion Complexes of Ionic Liquids and Cyclodextrins: Are They Formed in the Gas Phase?. Journal of the American Society for Mass Spectrometry, 2014, 25, 852-860.	2.8	11
385	Measurement and prediction of high-pressure viscosities of biodiesel fuels. Fuel, 2014, 122, 223-228.	6.4	44
386	High pressure density and solubility for the CO2+1-ethyl-3-methylimidazolium ethylsulfate system. Journal of Supercritical Fluids, 2014, 88, 46-55.	3.2	23
387	lonic liquid-based three phase partitioning (ILTPP) systems: Ionic liquid recovery and recycling. Fluid Phase Equilibria, 2014, 371, 67-74.	2.5	42
388	Predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilibria, 2014, 370, 24-33.	2.5	52
389	Biodiesel via supercritical ethanolysis within a global analysis "feedstocks-conversion-engine―for a sustainable fuel alternative. Progress in Energy and Combustion Science, 2014, 43, 1-35.	31.2	41
390	Vapor–Liquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling. Industrial & Description (Section 2014, 53, 3737-3748).	3.7	82
391	Cation Alkyl Side Chain Length and Symmetry Effects on the Surface Tension of Ionic Liquids. Langmuir, 2014, 30, 6408-6418.	3.5	75
392	Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations. Journal of Chemical Physics, 2014, 140, 064505.	3.0	127
393	Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 2014, 128, 58-66.	7.9	156
394	Lipidic Protic Ionic Liquid Crystals. ACS Sustainable Chemistry and Engineering, 2014, 2, 672-682.	6.7	43
395	Volatility study of [C1C1im][NTf2] and [C2C3im][NTf2] ionic liquids. Journal of Chemical Thermodynamics, 2014, 68, 317-321.	2.0	34
396	Recovery of paracetamol from pharmaceutical wastes. Separation and Purification Technology, 2014, 122, 315-322.	7.9	47

#	Article	IF	Citations
397	Analysis of the isomerism effect on the mutual solubilities of bis(trifluoromethylsulfonyl)imide-based ionic liquids with water. Fluid Phase Equilibria, 2014, 381, 28-35.	2.5	13
398	The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour. Physical Chemistry Chemical Physics, 2014, 16, 21340-21348.	2.8	30
399	Good's buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chemistry, 2014, 16, 3149-3159.	9.0	94
400	Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chemistry, 2014, 16, 259-268.	9.0	89
401	"Washing-out―ionic liquids from polyethylene glycol to form aqueous biphasic systems. Physical Chemistry Chemical Physics, 2014, 16, 2271.	2.8	24
402	Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilibria, 2014, 381, 36-45.	2.5	94
403	Evaluation of the Conductor-like Screening Model for Real Solvents for the Prediction of the Water Activity Coefficient at Infinite Dilution in Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 12466-12475.	3.7	50
404	Effect of the Cation on the Interactions between Alkyl Methyl Imidazolium Chloride Ionic Liquids and Water. Journal of Physical Chemistry B, 2014, 118, 10503-10514.	2.6	58
405	Removal of thiols from model jet-fuel streams assisted by ionic liquid membrane extraction. Chemical Engineering Journal, 2014, 256, 144-154.	12.7	24
406	Generating Ionic Liquids from Ionic Solids: An Investigation of the Melting Behavior of Binary Mixtures of Ionic Liquids. Crystal Growth and Design, 2014, 14, 4270-4277.	3.0	38
407	Design of novel aqueous micellar two-phase systems using ionic liquids as co-surfactants for the selective extraction of (bio)molecules. Separation and Purification Technology, 2014, 135, 259-267.	7.9	64
408	Superactivity induced by micellar systems as the key for boosting the yield of enzymatic reactions. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 140-151.	1.8	56
409	The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities. Physical Chemistry Chemical Physics, 2014, 16, 19952.	2.8	64
410	Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations, Journal of Chemical Physics, 2014, 140, 244307.	3.0	22
411	lonic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chemistry, 2014, 16, 4786-4815.	9.0	357
412	Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicology and Environmental Safety, 2014, 108, 302-310.	6.0	83
413	Probing the Interactions between Ionic Liquids and Water: Experimental and Quantum Chemical Approach. Journal of Physical Chemistry B, 2014, 118, 1848-1860.	2.6	111
414	Designing ionic liquids for absorptive cooling. Green Chemistry, 2014, 16, 3741.	9.0	44

#	Article	IF	CITATIONS
415	Effect of Polyvalent Ions in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2014, 118, 297-308.	2.6	22
416	Molecular interactions in aqueous biphasic systems composed of polyethylene glycol and crystalline vs. liquid cholinium-based salts. Physical Chemistry Chemical Physics, 2014, 16, 5723.	2.8	90
417	Evidence for the Interactions Occurring Between Ionic Liquids and Tetraethylene Glycol in Binary Mixtures and Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2014, 118, 4615-4629.	2.6	18
418	Characterization of systems of thiophene and benzene with ionic liquids. Journal of Molecular Liquids, 2014, 192, 26-31.	4.9	29
419	Phase diagrams of ionic liquids-based aqueous biphasic systems as a platform for extraction processes. Journal of Chemical Thermodynamics, 2014, 77, 206-213.	2.0	53
420	Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts. Chemical Engineering Journal, 2014, 252, 305-310.	12.7	42
421	Development of simple and transferable molecular models for biodiesel production with the soft-SAFT equation of state. Chemical Engineering Research and Design, 2014, 92, 2898-2911.	5.6	40
422	Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. Journal of Chemical Thermodynamics, 2014, 68, 221-234.	2.0	38
423	Phase equilibria description of biodiesels with water and alcohols for the optimal design of the production and purification process. Fuel, 2014, 129, 116-128.	6.4	20
424	Trends and demands in the solid–liquid equilibrium of lipidic mixtures. RSC Advances, 2014, 4, 31840-31850.	3.6	34
425	Impact of the cation symmetry on the mutual solubilities between water and imidazolium-based ionic liquids. Fluid Phase Equilibria, 2014, 375, 161-167.	2.5	30
426	Ionic liquid enhanced oil recovery in sand-pack columns. Fuel, 2014, 134, 196-200.	6.4	72
427	The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilibria, 2014, 375, 80-88.	2.5	63
428	Prediction of Ionic Liquids Properties through Molecular Dynamics Simulations. Current Physical Chemistry, 2014, 4, 151-172.	0.2	28
429	Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts. Process Biochemistry, 2013, 48, 716-722.	3.7	101
430	Speed of Sound, Density, and Derivative Properties of Methyl Oleate and Methyl Linoleate under High Pressure. Journal of Chemical & Engineering Data, 2013, 58, 2345-2354.	1.9	25
431	Aqueous biphasic systems composed of ionic liquids and polymers: A platform for the purification of biomolecules. Separation and Purification Technology, 2013, 113, 83-89.	7.9	82
432	Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. Journal of Hazardous Materials, 2013, 261, 106-113.	12.4	125

#	Article	IF	Citations
433	Alkylimidazolium Based Ionic Liquids: Impact of Cation Symmetry on Their Nanoscale Structural Organization. Journal of Physical Chemistry B, 2013, 117, 10889-10897.	2.6	207
434	Overview of the Excess Enthalpies of the Binary Mixtures Composed of Molecular Solvents and Ionic Liquids and Their Modeling Using COSMO-RS. Industrial & Engineering Chemistry Research, 2013, 52, 13862-13874.	3.7	74
435	Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzyme and Microbial Technology, 2013, 52, 141-150.	3.2	70
436	Thermophysical properties of [CNâ^'1C1im][PF6] ionic liquids. Journal of Molecular Liquids, 2013, 188, 196-202.	4.9	67
437	Why is the CO2–CS2 non-ideality larger than in CO2–CCl4? A Raman scattering study. Chemical Physics Letters, 2013, 583, 49-53.	2.6	0
438	Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate under High Pressure. Journal of Chemical & Engineering Data, 2013, 58, 1371-1377.	1.9	67
439	Measurement and Prediction of Densities of Vegetable Oils at Pressures up to 45 MPa. Journal of Chemical & Che	1.9	13
440	Experimental Densities and Speeds of Sound of Substituted Phenols and Their Modeling with the Prigogine–Flory–Patterson Model. Journal of Chemical & Engineering Data, 2013, 58, 2925-2931.	1.9	28
441	Systematic Study of the Thermophysical Properties of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions. Journal of Physical Chemistry B, 2013, 117, 10271-10283.	2.6	195
442	High Pressure Density and Speed of Sound in Two Biodiesel Fuels. Journal of Chemical & Engineering Data, 2013, 58, 3392-3398.	1.9	31
443	Solubility of non-aromatic hexafluorophosphate-based salts and ionic liquids in water determined by electrical conductivity. Fluid Phase Equilibria, 2013, 358, 50-55.	2.5	22
444	Composition and structural effects on the adsorption of ionic liquids onto activated carbon. Environmental Sciences: Processes and Impacts, 2013, 15, 1752.	3.5	32
445	Evidence of nanostructuration from the heat capacities of the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid series. Journal of Chemical Physics, 2013, 139, 104502.	3.0	35
446	A new microebulliometer for the measurement of the vapor–liquid equilibrium of ionic liquid systems. Fluid Phase Equilibria, 2013, 354, 156-165.	2.5	44
447	An atomic contribution model for the prediction of speed of sound. Fluid Phase Equilibria, 2013, 358, 108-113.	2.5	6
448	Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 507-516.	3.0	60
449	On the chemical reactions of carbon dioxide isoelectronic molecules CS2 and OCS with 1-butyl-3-methylimidazolium acetate. Chemical Communications, 2013, 49, 11083.	4.1	17
450	Combining ionic liquids and polyethylene glycols to boost the hydrophobic–hydrophilic range of aqueous biphasic systems. Physical Chemistry Chemical Physics, 2013, 15, 19580.	2.8	83

#	Article	IF	Citations
451	Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Advances, 2013, 3, 1835-1843.	3.6	138
452	Experimental measurements and modeling of CO2 solubility in sunflower, castor and rapeseed oils. Journal of Supercritical Fluids, 2013, 82, 191-199.	3.2	7
453	High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate. International Journal of Greenhouse Gas Control, 2013, 19, 299-309.	4.6	46
454	Measurement and prediction of speeds of sound of fatty acid ethyl esters and ethylic biodiesels. Fuel, 2013, 108, 840-845.	6.4	40
455	Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnology Progress, 2013, 29, 645-654.	2.6	50
456	The impact of self-aggregation on the extraction of biomolecules in ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 2013, 108, 174-180.	7.9	73
457	Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion. Journal of Chemical Thermodynamics, 2013, 64, 22-27.	2.0	49
458	Isobaric vapor–liquid equilibrium and isothermal surface tensions of 2,2′-oxybis[propane]+2,5-Dimethylfuran. Fluid Phase Equilibria, 2013, 345, 60-67.	2.5	17
459	Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustainable Chemistry and Engineering, 2013, 1, 393-402.	6.7	77
460	Enhanced extraction of caffeine from guaran \tilde{A}_i seeds using aqueous solutions of ionic liquids. Green Chemistry, 2013, 15, 2002.	9.0	127
461	Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, 2013, 111, 259-268.	6.4	287
462	Predicting Physico-Chemical Properties of Alkylated Naphthalenes with COSMO-RS. Polycyclic Aromatic Compounds, 2013, 33, 1-19.	2.6	9
463	Application of Wada's Group Contribution Method to the Prediction of the Speed of Sound of Biodiesel. Energy & Sound of Biodiesel. Energy & Sound of Biodiesel. Energy & Sound of Biodiesel.	5.1	22
464	Salting-in with a Salting-out Agent: Explaining the Cation Specific Effects on the Aqueous Solubility of Amino Acids. Journal of Physical Chemistry B, 2013, 117, 6116-6128.	2.6	85
465	Measurement and prediction of the speed of sound of biodiesel fuels. Fuel, 2013, 103, 1018-1022.	6.4	49
466	Novel data and a group contribution method for the prediction of the speed of sound and isentropic compressibility of pure fatty acids methyl and ethyl esters. Fuel, 2013, 105, 466-470.	6.4	31
467	Surface tension and refractive index of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. Journal of Chemical Thermodynamics, 2013, 57, 372-379.	2.0	92
468	Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology, 2013, 22, 1-12.	2.4	230

#	Article	IF	CITATIONS
469	Assessing the non-ideality of the CO2-CS2 system at molecular level: A Raman scattering study. Journal of Chemical Physics, 2013, 139, 124504.	3.0	6
470	On the solid-liquid equilibrium behavior of fatty acids with ethanolamines. MATEC Web of Conferences, 2013, 3, 01013.	0.2	0
471	Modeling wax formation with predictive UNIQUAC: from petroleum and fuels to biofuels. MATEC Web of Conferences, 2013, 3, 01001.	0.2	O
472	Characterization by Electrospray Ionization and Tandem Mass Spectrometry of Rhamnolipids Produced by Two <i>Pseudomonas Aeruginosa </i> Strains Isolated from Brazilian Crude Oil. European Journal of Mass Spectrometry, 2012, 18, 399-406.	1.0	22
473	Density and Viscosity Data for Binary Mixtures of 1-Alkyl-3-methylimidazolium Alkylsulfates + Water. Journal of Chemical & Data, 2012, 57, 3473-3482.	1.9	46
474	Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 2012, 97, 142-149.	7.9	108
475	Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Advances, 2012, 2, 7322.	3.6	129
476	lonic-liquid-based aqueous biphasic systems for improved detection of bisphenol A in human fluids. Analytical Methods, 2012, 4, 2664.	2.7	61
477	Partition Coefficients of Alkaloids in Biphasic Ionic-Liquid-Aqueous Systems and their Dependence on the Hofmeister Series. Separation Science and Technology, 2012, 47, 284-291.	2.5	33
478	Selective extraction of mercaptans from hydrocarbons mixtures using ionic liquids in membrane contactors. Procedia Engineering, 2012, 44, 1284-1286.	1.2	0
479	Measurement and Prediction of Biodiesel Volatility. Energy & Samp; Fuels, 2012, 26, 3048-3053.	5.1	31
480	CO ₂ in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. Journal of Physical Chemistry A, 2012, 116, 4890-4901.	2.5	100
481	Carbon Dioxide in 1-Butyl-3-methylimidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations. Journal of Physical Chemistry A, 2012, 116, 1605-1620.	2.5	120
482	lonic liquids microemulsions: the key to Candida antarctica lipase B superactivity. Green Chemistry, 2012, 14, 1620.	9.0	62
483	Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2012, 54, 49-54.	2.0	62
484	Evidence of an odd–even effect on the thermodynamic parameters of odd fluorotelomer alcohols. Journal of Chemical Thermodynamics, 2012, 54, 171-178.	2.0	17
485	Heat capacities at 298.15K of the extended [CnC1im][Ntf2] ionic liquid series. Journal of Chemical Thermodynamics, 2012, 53, 140-143.	2.0	63
486	Evaluation of the impact of phosphate salts on the formation of ionic-liquid-based aqueous biphasic systems. Journal of Chemical Thermodynamics, 2012, 54, 398-405.	2.0	81

#	Article	IF	Citations
487	Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt. Biochemical Engineering Journal, 2012, 67, 68-76.	3.6	99
488	Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 2012, 76, 162-168.	6.0	254
489	Increased significance of food wastes: Selective recovery of added-value compounds. Food Chemistry, 2012, 135, 2453-2461.	8.2	59
490	Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Advances, 2012, 2, 10882.	3.6	73
491	Thermophysical Properties of Five Acetate-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2012, 57, 3005-3013.	1.9	143
492	Surface Tension of Binary Mixtures of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: Experimental Measurements and Soft-SAFT Modeling. Journal of Physical Chemistry B, 2012, 116, 12133-12141.	2.6	61
493	Vapor–Liquid Equilibrium, Densities, and Interfacial Tensions of the System Hexane + 2,5-Dimethylfuran. Journal of Chemical & Engineering Data, 2012, 57, 2681-2688.	1.9	32
494	On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide. Chemical Communications, 2012, 48, 1245-1247.	4.1	94
495	Production and purification of an extracellular lipolytic enzyme using ionic liquid-based aqueous two-phase systems. Green Chemistry, 2012, 14, 734.	9.0	100
496	Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 2012, 41, 4966.	38.1	726
497	Molecular Dynamics Simulation Studies of the Interactions between Ionic Liquids and Amino Acids in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 1831-1842.	2.6	64
498	Modeling the [NTf ₂] Pyridinium Ionic Liquids Family and Their Mixtures with the Soft Statistical Associating Fluid Theory Equation of State. Journal of Physical Chemistry B, 2012, 116, 9089-9100.	2.6	55
499	Impact of Self-Aggregation on the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2012, 116, 7660-7668.	2.6	54
500	Ionic-Liquid-Based Aqueous Biphasic Systems with Controlled pH: The Ionic Liquid Anion Effect. Journal of Chemical & Description (2012, 57, 507-512).	1.9	64
501	Cation Symmetry effect on the Volatility of Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 10922-10927.	2.6	76
502	Simple screening method to identify toxic/non-toxic ionic liquids: Agar diffusion test adaptation. Ecotoxicology and Environmental Safety, 2012, 83, 55-62.	6.0	89
503	Overview of the Liquid–Liquid Equilibria of Ternary Systems Composed of Ionic Liquid and Aromatic and Aliphatic Hydrocarbons, and Their Modeling by COSMO-RS. Industrial & Engineering Chemistry Research, 2012, 51, 3483-3507.	3.7	169
504	The Origin of the LCST on the Liquid–Liquid Equilibrium of Thiophene with Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 5985-5992.	2.6	16

#	Article	IF	Citations
505	Role of the Hofmeister Series in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2012, 116, 7252-7258.	2.6	181
506	Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews, 2012, 41, 829-868.	38.1	375
507	Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B. World Journal of Microbiology and Biotechnology, 2012, 28, 2303-2310.	3.6	51
508	High pressure phase equilibria in methane+waxy systems. 3. Methane+a synthetic distribution of paraffin ranging from n-C13 to n-C22. Fluid Phase Equilibria, 2012, 313, 32-37.	2.5	8
509	Phase diagrams of mixtures of ethyl palmitate with fatty acid ethyl esters. Fuel, 2012, 91, 177-181.	6.4	46
510	Liquid–liquid equilibria for ternary systems containing ethyl esters, ethanol and glycerol at 323.15 and 353.15K. Fuel, 2012, 94, 386-394.	6.4	45
511	Liquid–liquid equilibria for ethyl esters+ethanol+water systems: Experimental measurements and CPA EoS modeling. Fuel, 2012, 96, 327-334.	6.4	18
512	Another look at the water solubility in biodiesels: Further experimental measurements and prediction with the CPA EoS. Fuel, 2012, 97, 843-847.	6.4	13
513	Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery. International Biodeterioration and Biodegradation, 2012, 68, 56-64.	3.9	164
514	Insight into the Interactions That Control the Phase Behaviour of New Aqueous Biphasic Systems Composed of Polyethylene Glycol Polymers and Ionic Liquids. Chemistry - A European Journal, 2012, 18, 1831-1839.	3.3	157
515	Critical Assessment of the Formation of Ionic-Liquid-Based Aqueous Two-Phase Systems in Acidic Media. Journal of Physical Chemistry B, 2011, 115, 11145-11153.	2.6	85
516	High Pressure Phase Behavior of Carbon Dioxide in Carbon Disulfide and Carbon Tetrachloride. Journal of Chemical & Data, 2011, 56, 2786-2792.	1.9	10
517	Measurements and Correlation of High-Pressure Densities of Phosphonium Based Ionic Liquids. Journal of Chemical & Description of Liquids (2011, 56, 2205-2217).	1.9	41
518	Prediction of Viscosities of Fatty Compounds and Biodiesel by Group Contribution. Energy & Description (2011, 25, 3712-3717.	5.1	51
519	Densities and Viscosities of Minority Fatty Acid Methyl and Ethyl Esters Present in Biodiesel. Journal of Chemical & Engineering Data, 2011, 56, 2175-2180.	1.9	105
520	Low-Temperature Behavior of Biodiesel: Solid–Liquid Phase Diagrams of Binary Mixtures Composed of Fatty Acid Methyl Esters. Energy & Samp; Fuels, 2011, 25, 3244-3250.	5.1	56
521	Assessment and Improvement of $\langle i \rangle n \langle j \rangle$ -Paraffin Distribution Obtained by HTGC To Predict Accurately Crude Oil Cold Properties. Energy & Discourage (Special Cold Properties) amp; Fuels, 2011, 25, 1153-1160.	5.1	28
522	Modeling Phase Equilibria Relevant to Biodiesel Production: A Comparison of <i>g</i> ^E Models, Cubic EoS, EoSâ°' <i>g</i> ^E and Association EoS. Industrial & Engineering Chemistry Research, 2011, 50, 2348-2358.	3.7	35

#	Article	IF	Citations
523	Evaluation of Predictive Models for the Viscosity of Biodiesel. Energy & Evaluation of Predictive Models for the Viscosity of Biodiesel. Energy & Evaluation of Predictive Models for the Viscosity of Biodiesel.	5.1	86
524	Measurement and Prediction of Biodiesel Surface Tensions. Energy &	5.1	45
525	High-Pressure Biodiesel Density: Experimental Measurements, Correlation, and Cubic-Plus-Association Equation of State (CPA EoS) Modeling. Energy & Equation of State (CPA EoS) & Equation	5.1	75
526	Thermophysical Characterization of Ionic Liquids Able To Dissolve Biomass. Journal of Chemical & Engineering Data, 2011, 56, 4813-4822.	1.9	295
527	Ionic Liquid Based Aqueous Biphasic Systems with Controlled pH: The Ionic Liquid Cation Effect. Journal of Chemical & Engineering Data, 2011, 56, 4253-4260.	1.9	96
528	High-Accuracy Vapor Pressure Data of the Extended [C _{<i>n</i>} C ₁ im][Ntf ₂] Ionic Liquid Series: Trend Changes and Structural Shifts. Journal of Physical Chemistry B, 2011, 115, 10919-10926.	2.6	199
529	Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids. Green Chemistry, 2011, 13, 1517.	9.0	129
530	The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities. Energy and Environmental Science, 2011, 4, 4614.	30.8	99
531	Chameleonic Behavior of Ionic Liquids and Its Impact on the Estimation of Solubility Parameters. Journal of Physical Chemistry B, 2011, 115, 12879-12888.	2.6	38
532	Evaluation of Cationâ^Anion Interaction Strength in Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 4033-4041.	2.6	227
533	Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry, 2011, 13, 3173.	9.0	124
534	Solubility of CO ₂ in 1-Butyl-3-methyl-imidazolium-trifluoro Acetate Ionic Liquid Studied by Raman Spectroscopy and DFT Investigations. Journal of Physical Chemistry B, 2011, 115, 3538-3550.	2.6	67
535	An Overview of the Liquidâ^'Liquid Equilibria of (Ionic Liquid + Hydrocarbon) Binary Systems and Their Modeling by the Conductor-like Screening Model for Real Solvents. Industrial & Dinering Chemistry Research, 2011, 50, 5279-5294.	3.7	146
536	Aqueous biphasic systems composed of a water-stable ionic liquid + carbohydrates and their applications. Green Chemistry, 2011, 13, 1536.	9.0	185
537	Biodiesel Density: Experimental Measurements and Prediction Models. Energy & Energy	5.1	169
538	Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2011, 13, 340.	9.0	125
539	Design of ionic liquids for lipase purification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2679-2687.	2.3	91
540	How to enhance the hydrophobic nature of ionic liquids while lowering their toxicity?. Toxicology Letters, 2011, 205, S124.	0.8	1

#	Article	IF	CITATIONS
541	Aqueous solubility, effects of salts on aqueous solubility, and partitioning behavior of hexafluorobenzene: Experimental results and COSMO-RS predictions. Chemosphere, 2011, 84, 415-422.	8.2	17
542	Viscosity of (C2–C14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range. Fluid Phase Equilibria, 2011, 301, 22-32.	2.5	220
543	Ecotoxicological risk profile of ionic liquids: octanolâ€water distribution coefficients and toxicological data. Journal of Chemical Technology and Biotechnology, 2011, 86, 957-963.	3.2	47
544	Addition of $\hat{l}\pm\hat{a}$ coopherol on poly(lactic acid): Thermal, mechanical, and sorption properties. Journal of Applied Polymer Science, 2011, 119, 2468-2475.	2.6	19
545	Surface tensions of esters from a combination of the gradient theory with the CPA EoS. Fluid Phase Equilibria, 2011, 303, 56-61.	2.5	20
546	Liquid–liquid equilibria for the canola oil biodiesel + ethanol + glycerol system. Fuel, 2011, 90, 2738-2745.	6.4	57
547	Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. Journal of Chemical Thermodynamics, 2011, 43, 948-957.	2.0	155
548	Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State. Journal of Supercritical Fluids, 2011, 55, 876-892.	3.2	71
549	High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids. Journal of Supercritical Fluids, 2011, 56, 224-230.	3.2	100
550	<i>N</i> ′-Benzoyl- <i>N</i> , <i>N</i> -diethylthiourea: a monoclinic polymorph. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 0870-0870.	0.2	16
551	Predictive Group Contribution Models for the Thermophysical Properties of Ionic Liquids. ACS Symposium Series, 2010, , 385-401.	0.5	7
552	Solubility of Adamantane in Phosphonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2010, 55, 662-665.	1.9	23
553	Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS. Fluid Phase Equilibria, 2010, 289, 140-147.	2.5	117
554	(Extraction of biomolecules using) aqueous biphasic systems formed by ionic liquids and aminoacids. Separation and Purification Technology, 2010, 72, 85-91.	7.9	137
555	Tryptophan extraction using hydrophobic ionic liquids. Separation and Purification Technology, 2010, 72, 167-173.	7.9	119
556	Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 2010, 75, 39-47.	7.9	180
557	Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results. Journal of Chemical Thermodynamics, 2010, 42, 213-219.	2.0	38
558	Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach. Fluid Phase Equilibria, 2010, 294, 234-240.	2.5	78

#	Article	IF	CITATIONS
559	Prediction of near and supercritical fatty acid ester+alcohol systems with the CPA EoS. Journal of Supercritical Fluids, 2010, 52, 241-248.	3.2	32
560	High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. Journal of Supercritical Fluids, 2010, 52, 258-265.	3.2	164
561	High pressure phase equilibria in methane+waxy systems. 2. Methane+waxy ternary mixture. Fluid Phase Equilibria, 2010, 297, 149-153.	2.5	17
562	Measurement and Modeling of Biodiesel Cold-Flow Properties. Energy & Energy	5.1	38
563	Toward an Understanding of the Aqueous Solubility of Amino Acids in the Presence of Salts: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2010, 114, 16450-16459.	2.6	34
564	Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems. Green Chemistry, 2010, 12, 1661.	9.0	168
565	Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure. Journal of Chemical & Samp; Engineering Data, 2010, 55, 645-652.	1.9	216
566	¹ H NMR and Molecular Dynamics Evidence for an Unexpected Interaction on the Origin of Salting-In/Salting-Out Phenomena. Journal of Physical Chemistry B, 2010, 114, 2004-2014.	2.6	116
567	Characterization of Libyan Waxy Crude Oils. Energy & Energy & 2010, 24, 3101-3107.	5.1	36
568	Hydrolysis of Tetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 3744-3749.	2.5	551
569	Gaseous Phase Heat Capacity of Benzoic Acid. Journal of Chemical & Engineering Data, 2010, 55, 2799-2808.	1.9	13
570	Introduction to the Special Section on the 2009 Iberian Meeting on Ionic Liquids (IMIL). Journal of Chemical &	1.9	0
571	Evaluation of Methods for the Extraction and Characterization of Waxes from Crude Oils. Energy & Lamp; Fuels, 2010, 24, 1837-1843.	5.1	27
572	Phase Equilibria of Ester + Alcohol Systems and Their Description with the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2010, 49, 3452-3458.	3.7	44
573	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters. Journal of Chemical & Data, 2010, 55, 3983-3990.	1.9	282
574	Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquatic Toxicology, 2010, 96, 290-297.	4.0	122
575	Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS. Chemosphere, 2010, 79, 821-829.	8.2	30
576	High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chemistry, 2010, 12, 1715.	9.0	213

#	Article	IF	CITATIONS
577	Non-ideality of Solutions of NH ₃ , SO ₂ , and H ₂ S in Ionic Liquids and the Prediction of Their Solubilities Using the Floryâ°'Huggins Model. Energy & Energy & 2010, 24, 6662-6666.	5.1	39
578	Modeling of Biodiesel Multicomponent Systems with the Cubic-Plus-Association (CPA) Equation of State. Industrial & Engineering Chemistry Research, 2010, 49, 1419-1427.	3.7	29
579	Thermophysical Properties and Water Saturation of [PF ₆]-Based Ionic Liquids. Journal of Chemical &	1.9	75
580	Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems. International Journal of Molecular Sciences, 2010, 11, 1777-1791.	4.1	181
581	Structural and Positional Isomerism Influence in the Physical Properties of Pyridinium NTf ₂ -Based Ionic Liquids: Pure and Water-Saturated Mixtures. Journal of Chemical & Engineering Data, 2010, 55, 4514-4520.	1.9	118
582	Mutual Solubility of Water and Structural/Positional Isomers of <i>N</i> -Alkylpyridinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 15925-15934.	2.6	74
583	Biosurfactants from Yeasts: Characteristics, Production and Application. Advances in Experimental Medicine and Biology, 2010, 672, 236-249.	1.6	70
584	Surface Tensions of Bis(trifluoromethylsulfonyl)imide Anion-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2010, 55, 3807-3812.	1.9	87
585	On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents. Journal of Physical Chemistry Letters, 2010, 1, 774-780.	4.6	96
586	Liquidâ^'Liquid Equilibrium for Ternary Systems Containing Ethyl Esters, Anhydrous Ethanol and Water at 298.15, 313.15, and 333.15 K. Industrial & Engineering Chemistry Research, 2010, 49, 12613-12619.	3.7	33
587	Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AICHE Journal, 2009, 55, 1274-1290.	3.6	274
588	Description of the mutual solubilities of fatty acids and water with the CPA EoS. AICHE Journal, 2009, 55, 1604-1613.	3.6	46
589	Gasâ€phase dissociation of ionic liquid aggregates studied by electrospray ionisation mass spectrometry and energyâ€variable collision induced dissociation. Journal of Mass Spectrometry, 2009, 44, 144-150.	1.6	33
590	Phase equilibria of glycerol containing systems and their description with the Cubic-Plus-Association (CPA) Equation of State. Fluid Phase Equilibria, 2009, 280, 22-29.	2.5	85
591	A critical approach to viscosity index. Fuel, 2009, 88, 2199-2206.	6.4	54
592	High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. Journal of Supercritical Fluids, 2009, 48, 99-107.	3.2	139
593	High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. Journal of Supercritical Fluids, 2009, 50, 105-111.	3.2	167
594	The solid–liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms. Thermochimica Acta, 2009, 496, 30-37.	2.7	60

#	Article	IF	CITATIONS
595	The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids: differing by four carbon atoms. Chemistry and Physics of Lipids, 2009, 157, 40-50.	3.2	54
596	The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids. Chemistry and Physics of Lipids, 2009, 160, 85-97.	3.2	75
597	Thermodynamic characterization of pure perfluoroalkanes, including interfacial and second order derivative properties, using the crossover soft-SAFT EoS. Fluid Phase Equilibria, 2009, 286, 134-143.	2.5	50
598	Thermodynamic Modeling of the Aqueous Solubility of PAHs. Industrial & Engineering Chemistry Research, 2009, 48, 5530-5536.	3.7	21
599	Crystallization Behavior of Mixtures of Fatty Acid Ethyl Esters with Ethyl Stearate. Energy & Samp; Fuels, 2009, 23, 4625-4629.	5.1	43
600	Towards an Understanding of the Mutual Solubilities of Water and Hydrophobic Ionic Liquids in the Presence of Salts: The Anion Effect. Journal of Physical Chemistry B, 2009, 113, 2815-2825.	2.6	80
601	Evaluation of Cation Influence on the Formation and Extraction Capability of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2009, 113, 5194-5199.	2.6	237
602	Specific Solvation Interactions of CO ₂ on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. Journal of Physical Chemistry B, 2009, 113, 6803-6812.	2.6	201
603	lon Specific Effects on the Mutual Solubilities of Water and Hydrophobic Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 202-211.	2.6	175
604	On the Interactions between Amino Acids and Ionic Liquids in Aqueous Media. Journal of Physical Chemistry B, 2009, 113, 13971-13979.	2.6	68
605	Evaluation of Anion Influence on the Formation and Extraction Capacity of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2009, 113, 9304-9310.	2.6	295
606	Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilibria, 2008, 265, 57-65.	2.5	148
607	High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate+water) systems. Journal of Chemical Thermodynamics, 2008, 40, 1187-1192.	2.0	78
608	Light olefins/paraffins sorption in poly(lactic acid) films. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1312-1319.	2.1	2
609	Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology and Bioengineering, 2008, 99, 588-598.	3.3	65
610	Non-ideal behaviour of a room temperature ionic liquid in an alkoxyethanol or poly ethers at T=(298.15 to 318.15)K. Journal of Chemical Thermodynamics, 2008, 40, 32-39.	2.0	82
611	Acoustic and volumetric properties of aqueous solutions of imidazolium based ionic liquids at 298.15 K. Journal of Chemical Thermodynamics, 2008, 40, 695-701.	2.0	85
612	Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 149-154.	4.7	27

#	Article	IF	Citations
613	Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilibria, 2008, 263, 26-32.	2.5	268
614	A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria, 2008, 266, 195-201.	2.5	242
615	Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. Fluid Phase Equilibria, 2008, 267, 83-91.	2.5	84
616	Liquid–liquid equilibrium of substituted perfluoro-n-octane+n-octane systems. Fluid Phase Equilibria, 2008, 268, 85-89.	2.5	7
617	Estimation of speed of sound of ionic liquids using surface tensions and densities: A volume based approach. Fluid Phase Equilibria, 2008, 267, 188-192.	2.5	71
618	Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. Fluid Phase Equilibria, 2008, 268, 74-84.	2.5	144
619	Mutual Solubilities of Water and the [C <i>_n</i> mim][Tf ₂ N] Hydrophobic Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 1604-1610.	2.6	325
620	Densities and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-, Pyrrolidinium-, and Piperidinium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 805-811.	1.9	233
621	Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids. Journal of Chemical & Chemica	1.9	130
622	A Group Contribution Method for Heat Capacity Estimation of Ionic Liquids. Industrial & Engineering Chemistry Research, 2008, 47, 5751-5757.	3.7	152
623	Thermodynamic Studies of Ionic Interactions in Aqueous Solutions of Imidazolium-Based Ionic Liquids [Emim][Br] and [Bmim][Cl]. Journal of Physical Chemistry B, 2008, 112, 3380-3389.	2.6	127
624	Solubility of Water in Tetradecyltrihexylphosphonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 2378-2382.	1.9	114
625	Prediction of Water Solubility in Biodiesel with the CPA Equation of State. Industrial & Engineering Chemistry Research, 2008, 47, 4278-4285.	3.7	79
626	Surface Tensions for the 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal of Chemical & Data, 2008, 53, 1346-1350.	1.9	199
627	Viscosities of Liquid Fluorocompounds. Journal of Chemical & Engineering Data, 2008, 53, 538-542.	1.9	31
628	Solidâ~'Liquid Equilibria under High Pressure of Nine Pure n-Alkylbenzenes. Journal of Chemical & Engineering Data, 2008, 53, 233-237.	1.9	7
629	Prediction of Cloud Points of Biodiesel. Energy & Energy & 2008, 22, 747-752.	5.1	90
630	Deposition of <i>Yarrowia lipolytica</i> on plasma prepared teflonlike thin films. Surface Engineering, 2008, 24, 23-27.	2.2	17

#	Article	IF	Citations
631	A quartz crystal microbalance technique to study wax crystallization in the presence of gas. Measurement Science and Technology, 2008, 19, 065704.	2.6	8
632	High-Pressure Solubility Data of Methane in Aniline and Aqueous Aniline Systems. Journal of Chemical & Engineering Data, 2007, 52, 1100-1102.	1.9	18
633	<i>P</i> Ï <i>T</i> Measurements of Imidazolium-Based Ionic Liquids. Journal of Chemical & Description (1997). See Engineering Data, 2007, 52, 1881-1888.	1.9	277
634	lonic Liquids:Â First Direct Determination of their Cohesive Energy. Journal of the American Chemical Society, 2007, 129, 284-285.	13.7	295
635	High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 80-88.	1.9	381
636	Selective Adsorption of Volatile Organic Compounds in Micropore Aluminum Methylphosphonate-α: A Combined Molecular Simulationâ ² Experimental Approach. Langmuir, 2007, 23, 7299-7305.	3.5	26
637	Modeling the Phase Equilibria of Poly(ethylene glycol) Binary Mixtures with soft-SAFT EoS. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 4678-4685.	3.7	19
638	Analysis of the Isothermal Structure Development in Waxy Crude Oils under Quiescent Conditions. Energy & Energy	5.1	64
639	Solidâ^'Liquid Equilibria under High Pressure of Eight Pure n-Alkylcyclohexanes. Journal of Chemical & Engineering Data, 2007, 52, 1250-1254.	1.9	8
640	Salting-Out Effects in Aqueous Ionic Liquid Solutions: Cloud-Point Temperature Shiftsâ€. Journal of Physical Chemistry B, 2007, 111, 4737-4741.	2.6	97
641	Modeling the Liquidâ^'Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State. Industrial & Equation of State. Industrial & Equipment of State. Industrial & Equi	3.7	23
642	Preparation and characterization of organosilicon thin films for selective adhesion of Yarrowia lipolytica yeast cells. Journal of Chemical Technology and Biotechnology, 2007, 82, 360-366.	3.2	21
643	High pressure solid–liquid equilibria of fatty acids. Fluid Phase Equilibria, 2007, 253, 118-123.	2.5	36
644	Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols+ionic liquids. Fluid Phase Equilibria, 2007, 255, 167-178.	2.5	127
645	Mutual solubilities of hydrocarbons and water with the CPA EoS. Fluid Phase Equilibria, 2007, 258, 58-66.	2.5	140
646	Liquid–liquid equilibrium of (1H,1H,7H-perfluoroheptan-1-ol+perfluoroalkane) binary mixtures. Fluid Phase Equilibria, 2007, 251, 33-40.	2.5	13
647	An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems. Fluid Phase Equilibria, 2007, 261, 449-454.	2.5	302
648	Analysis of the effects of hyperbaric gases on S. cerevisiae cell cycle through a morphological approach. Process Biochemistry, 2007, 42, 1378-1383.	3.7	6

#	Article	IF	CITATIONS
649	Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect. Journal of Colloid and Interface Science, 2007, 314, 621-630.	9.4	406
650	Gas solubility of carbon dioxide in poly(lactic acid) at high pressures: Thermal treatment effect. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 616-625.	2.1	42
651	Total mercury in sediments from mud volcanoes in Gulf of Cadiz. Marine Pollution Bulletin, 2007, 54, 1539-1544.	5.0	7
652	Mutual Solubilities of Water and Hydrophobic Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 13082-13089.	2.6	374
653	Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World Journal of Microbiology and Biotechnology, 2007, 23, 339-344.	3.6	21
654	How does \hat{l}^2 -cyclodextrin affect the aggregation of sodium perfluoroheptanoate in aqueous solution: a 19F NMR study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 157-162.	1.6	7
655	High pressure phase equilibria in methane+waxy systems. Fluid Phase Equilibria, 2007, 255, 193-199.	2.5	43
656	Surface Tension of Liquid Fluorocompounds. Journal of Chemical & Engineering Data, 2006, 51, 1820-1824.	1.9	61
657	Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State. Macromolecules, 2006, 39, 4240-4246.	4.8	38
658	Nitrogen and Water Adsorption in Aluminum Methylphosphonate α: A Molecular Simulation Study. Langmuir, 2006, 22, 3097-3104.	3.5	11
659	Vaporâ^'Liquid Equilibrium of Carbon Dioxideâ^'Perfluoroalkane Mixtures:  Experimental Data and SAFT Modeling. Industrial & Engineering Chemistry Research, 2006, 45, 2341-2350.	3.7	107
660	Reliable Wax Predictions for Flow Assurance. Energy & Ene	5.1	63
661	Water Solubility in Linear Fluoroalkanes Used in Blood Substitute Formulations. Journal of Physical Chemistry B, 2006, 110, 22923-22929.	2.6	34
662	Gas solubility of carbon dioxide in poly(lactic acid) at high pressures. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1010-1019.	2.1	55
663	Cell surface characterization of Yarrowia lipolytica IMUFRJ 50682. Yeast, 2006, 23, 867-877.	1.7	49
664	Carbon dioxide, ethylene and water vapor sorption in poly(lactic acid). Fluid Phase Equilibria, 2006, 250, 116-124.	2.5	38
665	Liquid–liquid equilibrium of (perfluoroalkane+alkane) binary mixtures. Fluid Phase Equilibria, 2006, 242, 210-219.	2.5	47
666	A new predictive UNIQUAC for modeling of wax formation in hydrocarbon fluids. Fluid Phase Equilibria, 2006, 247, 8-17.	2.5	53

#	Article	IF	CITATIONS
667	Prediction of viscosities and surface tensions of fuels using a new corresponding states model. Fuel, 2006, 85, 874-877.	6.4	42
668	Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochemistry, 2006, 41, 1894-1898.	3.7	156
669	How does Î ² -cyclodextrin affect oxygen solubility in aqueous solutions of sodium perfluoroheptanoate?. Journal of Colloid and Interface Science, 2006, 303, 552-556.	9.4	6
670	Optimization and Modeling of Laccase Production by Trametes versicolor in a Bioreactor Using Statistical Experimental Design. Applied Biochemistry and Biotechnology, 2006, 134, 233-248.	2.9	72
671	Attachment/detachment of Saccharomyces cerevisiae on plasma deposited organosilicon thin films. European Physical Journal D, 2006, 56, B1256-B1262.	0.4	12
672	Corresponding-States Modeling of the Speed of Sound of Long-Chain Hydrocarbons. International Journal of Thermophysics, 2006, 27, 1095-1109.	2.1	21
673	Improving lipase production using a perfluorocarbon as oxygen carrier. Journal of Chemical Technology and Biotechnology, 2006, 81, 1368-1374.	3.2	33
674	Preparation and Characterization of Hybrid Organic/Inorganic Nanocomposites by In Situ Miniemulsion Polymerization. Materials Science Forum, 2006, 514-516, 1201-1205.	0.3	5
675	Crystallisation of a multiparaffinic wax in normal tetradecane under high pressure. Fuel, 2005, 84, 453-459.	6.4	27
676	Enzymatic method for determining oxygen solubility in perfluorocarbon emulsions. Fluid Phase Equilibria, 2005, 231, 109-113.	2.5	18
677	Liquid–solid equilibria under high pressure of tetradecane+pentadecane and tetradecane+hexadecane binary systems. Fluid Phase Equilibria, 2005, 235, 173-181.	2.5	52
678	Solubility of oxygen in substituted perfluorocarbons. Fluid Phase Equilibria, 2005, 238, 7-12.	2.5	24
679	Modeling vapor–liquid interfaces with the gradient theory in combination with the CPA equation of state. Fluid Phase Equilibria, 2005, 228-229, 479-485.	2.5	59
680	High pressure (solid+liquid) equilibria of n-alkane mixtures: experimental results, correlation and prediction. Fluid Phase Equilibria, 2005, 230, 72-80.	2.5	39
681	Process Engineering Versus Product Engineering. Chemical Engineering Research and Design, 2005, 83, 352-356.	5.6	3
682	Modeling high-pressure wax formation in petroleum fluids. AICHE Journal, 2005, 51, 2089-2097.	3.6	21
683	Laccase improvement in submerged cultivation: induced production and kinetic modelling. Journal of Chemical Technology and Biotechnology, 2005, 80, 669-676.	3.2	63
684	Assessment of yeast viability under hyperbaric conditions through a modeling approach. Journal of Chemical Technology and Biotechnology, 2005, 80, 872-877.	3.2	4

#	Article	IF	CITATIONS
685	Paraffin crystallization in synthetic mixtures: Predictive local composition models revisited. Fluid Phase Equilibria, 2005, 233, 28-33.	2.5	16
686	Aging mechanisms of perfluorocarbon emulsions using image analysis. Journal of Colloid and Interface Science, 2005, 286, 224-232.	9.4	69
687	Selection and Optimization of Culture Medium for Exopolysaccharide Production by Coriolus (Trametes) Versicolor. World Journal of Microbiology and Biotechnology, 2005, 21, 1499-1507.	3.6	34
688	Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modeling. International Journal of Thermophysics, 2005, 26, 47-61.	2.1	79
689	Modeling the Thermal Conductivity of Pure and Mixed Heavy n-Alkanes Suitable for the Design of Phase Change Materials. International Journal of Thermophysics, 2005, 26, 1461-1475.	2.1	9
690	Phase Equilibria of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Engineering Chemistry Research, 2005, 44, 7027-7037.	3.7	54
691	Solubility of Hexafluorobenzene in Aqueous Salt Solutions from (280 to 340) K. Journal of Chemical & Lamp; Engineering Data, 2005, 50, 237-242.	1.9	29
692	Densities and Vapor Pressures of Highly Fluorinated Compounds. Journal of Chemical & Engineering Data, 2005, 50, 1328-1333.	1.9	64
693	The Limitations of the Cloud Point Measurement Techniques and the Influence of the Oil Composition on Its Detection. Petroleum Science and Technology, 2005, 23, 1113-1128.	1.5	86
694	Surface Tension of Decane Binary and Ternary Mixtures with Eicosane, Docosane, and Tetracosane. Journal of Chemical & Docosane, Engineering Data, 2005, 50, 1043-1046.	1.9	41
695	Modelling Phase Equilibria in Systems with Organic Solid Solutions. Computer Aided Chemical Engineering, 2004, , 229-249.	0.5	6
696	Decolorization of Dyes from textile wastewater by <i>Trametes versicolor</i> . Environmental Technology (United Kingdom), 2004, 25, 1313-1320.	2.2	72
697	Dynamic rheological analysis of the gelation behaviour of waxy crude oils. Rheologica Acta, 2004, 43, 433-441.	2.4	84
698	Correlation of solvent activities in polymer solutions: a comparison of models. Fluid Phase Equilibria, 2004, 219, 129-138.	2.5	14
699	Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes. Fluid Phase Equilibria, 2004, 222-223, 161-168.	2.5	36
700	Thermodynamic properties of perfluoro-n-octane. Fluid Phase Equilibria, 2004, 225, 39-47.	2.5	48
701	Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Applied Microbiology and Biotechnology, 2004, 66, 318-324.	3.6	43
702	Solubility of oxygen in liquid perfluorocarbons. Fluid Phase Equilibria, 2004, 222-223, 325-330.	2.5	81

#	Article	IF	CITATIONS
703	Solid deposition as a function of temperature in the nC10 + (nC24–nC25–nC26) system. Fluid Phase Equilibria, 2004, 224, 237-244.	2.5	36
704	A modified extended UNIQUAC model for proteins. Fluid Phase Equilibria, 2004, 222-223, 127-133.	2.5	7
705	Influence of C/N ratio on autotrophic biomass development in a sequencing batch reactor. Biochemical Engineering Journal, 2004, 21, 131-139.	3.6	13
706	SAFT Modeling of the Solubility of Gases in Perfluoroalkanes. Journal of Physical Chemistry B, 2004, 108, 1450-1457.	2.6	75
707	CORRELATION OF SOLVENT ACTIVITIES IN POLYMER SOLUTIONS. , 2004, , .		0
708	Viscosity and Liquid Density of Asymmetric Hydrocarbon Mixtures. International Journal of Thermophysics, 2003, 24, 1221-1239.	2.1	83
709	A new Corresponding States model for the estimation of thermophysical properties of long chain n-alkanes. Fluid Phase Equilibria, 2003, 212, 303-314.	2.5	29
710	Measurement and modeling of surface tensions of asymmetric systems: heptane, eicosane, docosane, tetracosane and their mixtures. Fluid Phase Equilibria, 2003, 214, 211-221.	2.5	52
711	The pressure effect on the wax formation in diesel fuelâ [†] . Fuel, 2003, 82, 595-601.	6.4	39
712	Evidence for the Aging of Wax Deposits in Crude Oils by Ostwald Ripening. Petroleum Science and Technology, 2003, 21, 381-391.	1.5	46
713	Cloud Points: Can We Measure or Model Them?. Petroleum Science and Technology, 2003, 21, 345-358.	1.5	66
714	Surface Tension of Heptane, Decane, Hexadecane, Eicosane, and Some of Their Binary Mixtures. Journal of Chemical & Chemic	1.9	137
715	Cloud and pour points in fuel blends. Fuel, 2002, 81, 963-967.	6.4	47
716	Low-Pressure Modeling of Wax Formation in Crude Oils. Energy & Energy & 2001, 15, 1454-1460.	5.1	66
717	Solidâ^'Liquidâ^'Vapor Phase Boundary of a North Sea Waxy Crude:  Measurement and Modeling. Energy & Fuels, 2001, 15, 730-735.	5.1	63
718	Cloud point prediction of fuels and fuel blends. Fluid Phase Equilibria, 2001, 180, 247-255.	2.5	42
719	Surface tension of pure heavy n-alkanes: a corresponding states approach. Fluid Phase Equilibria, 2001, 183-184, 229-238.	2.5	45
720	Measurement and prediction of temperature and pressure effect on wax content in a partially frozen paraffinic system. Fluid Phase Equilibria, 2001, 187-188, 71-82.	2.5	41

#	Article	IF	CITATIONS
721	Low temperature behaviour of refined products from DSC measurements and their thermodynamical modelling. Thermochimica Acta, 2001, 372, 93-101.	2.7	27
722	A THERMODYNAMIC MODEL TO PREDICT WAX FORMATION IN PETROLEUM FLUIDS. Brazilian Journal of Chemical Engineering, 2001, 18, 411-422.	1.3	17
723	Measurements and modelling of wax formation in diesel fuels. Fuel, 2000, 79, 607-616.	6.4	72
724	Solid–liquid equilibrium of α-lactose in ethanol/water. Fluid Phase Equilibria, 2000, 173, 121-134.	2.5	80
725	Prediction of solid–fluid phase diagrams of light gases–heavy paraffin systems up to 200 MPa using an equation of state–GE model. Fluid Phase Equilibria, 2000, 167, 145-159.	2.5	67
726	General Form of the Cross-Energy Parameter of Equations of State. Industrial & Engineering Chemistry Research, 2000, 39, 3076-3082.	3.7	25
727	A Thermodynamic Model for Predicting Wax Formation in Jet and Diesel Fuels. Energy &	5.1	47
728	The Use of Differential Scanning Calorimetry in Studies of Wax Deposition: Measuring the Solid Formation and Binary Solid-Liquid Equilibrium Phase Diagrams. Oil and Gas Science and Technology, 1999, 54, 641-648.	1.4	5
729	Predictive local composition models: NRTL and UNIQUAC and their application to model solid–liquid equilibrium of n-alkanes. Fluid Phase Equilibria, 1999, 158-160, 447-457.	2.5	70
730	Wax content measurements in partially frozen paraffinic systems. Fluid Phase Equilibria, 1999, 161, 135-151.	2.5	54
731	A new method for measuring solid–liquid equilibrium phase diagrams using calorimetry. Fluid Phase Equilibria, 1998, 148, 147-160.	2.5	19
732	Predictive UNIQUAC:Â A New Model for the Description of Multiphase Solidâ^'Liquid Equilibria in Complex Hydrocarbon Mixtures. Industrial & Engineering Chemistry Research, 1998, 37, 4870-4875.	3.7	110
733	Experimental Measurements and Thermodynamic Modeling of Paraffinic Wax Formation in Undercooled Solutions. Industrial & Engineering Chemistry Research, 1997, 36, 4977-4983.	3.7	70
734	Measuring the amount of crystallinity in solutions using DSC. Canadian Journal of Chemical Engineering, 1997, 75, 1075-1079.	1.7	7
735	Predictive Local Composition Models for Solid/Liquid Equilibrium inn-Alkane Systems:Â Wilson Equation for Multicomponent Systems. Industrial & Equation for Multicomponent Systems. Industrial & Engineering Chemistry Research, 1996, 35, 918-925.	3.7	76
736	Solid-liquid equilibrium of n-alkanes using the chain delta lattice parameter model. Fluid Phase Equilibria, 1996, 117, 138-145.	2.5	27
737	A local composition model for paraffinic solid solutions. Chemical Engineering Science, 1996, 51, 3273-3282.	3.8	76
738	Evaluation of activity coefficient models in prediction of alkane solid-liquid equilibria. Fluid Phase Equilibria, 1995, 103, 23-39.	2.5	149

João A Coutinho

#	Article	IF	CITATIONS
739	Predictions of three-phase regions in CO2-oil mixtures. Journal of Petroleum Science and Engineering, 1995, 12, 201-208.	4.2	16
740	Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1. CO2/hydrocarbons using SRK equation of state. Fluid Phase Equilibria, 1994, 102, 31-60.	2.5	86
741	EXTRAÇÃ f O DE ANTIOXIDANTES UTILIZANDO SISTEMAS AQUOSOS BIFÃ f SICOS COM LÃQUIDOS IÃ"NICOS COMO ADJUVANTE. , 0, , .		0