
## Susanne Burdak-Rothkamm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4234550/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | DNA Damage Repair Deficiency and Synthetic Lethality for Cancer Treatment. Trends in Molecular<br>Medicine, 2021, 27, 91-92.                                                                          | 6.7 | 14        |
| 2  | Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the<br>maintenance of genome stability. Mutation Research - Reviews in Mutation Research, 2021, 787, 108346. | 5.5 | 18        |
| 3  | Second-Generation Antiandrogen Therapy Radiosensitizes Prostate Cancer Regardless of Castration<br>State through Inhibition of DNA Double Strand Break Repair. Cancers, 2020, 12, 2467.               | 3.7 | 11        |
| 4  | Radiosensitisation and enhanced tumour growth delay of colorectal cancer cells by sustained treatment with trifluridine/tipiracil and X-rays. Cancer Letters, 2020, 493, 179-188.                     | 7.2 | 8         |
| 5  | DNA Damage Repair Deficiency in Prostate Cancer. Trends in Cancer, 2020, 6, 974-984.                                                                                                                  | 7.4 | 25        |
| 6  | OC-0635 Targeting TEMPRSS2:ERG fusion to achieve a tumor-specific radiosensitization in prostate cancer. Radiotherapy and Oncology, 2019, 133, S338-S339.                                             | 0.6 | 0         |
| 7  | PO-1085 Prolonged trifluridine/tipiracil treatment radiosensitises colorectal cancer cells.<br>Radiotherapy and Oncology, 2019, 133, S602-S603.                                                       | 0.6 | 0         |
| 8  | A functional <i>ex vivo</i> assay to detect PARP1â€EJ repair and radiosensitization by PARPâ€inhibitor in prostate cancer. International Journal of Cancer, 2019, 144, 1685-1696.                     | 5.1 | 18        |
| 9  | Establishment of the First Well-differentiated Human Pancreatic Neuroendocrine Tumor Model.<br>Molecular Cancer Research, 2018, 16, 496-507.                                                          | 3.4 | 55        |
| 10 | Reduced RBM3 expression is associated with aggressive tumor features in esophageal cancer but not significantly linked to patient outcome. BMC Cancer, 2018, 18, 1106.                                | 2.6 | 9         |
| 11 | Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. Mutation Research - Reviews in Mutation Research, 2018, 778, 13-22.                 | 5.5 | 42        |
| 12 | Highâ€Level Glyoxalase 1 (GLO1) expression is linked to poor prognosis in prostate cancer. Prostate, 2017,<br>77, 1528-1538.                                                                          | 2.3 | 16        |
| 13 | Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumor Biology, 2017, 39, 101042831771216.                                                                          | 1.8 | 51        |
| 14 | Successful mTOR inhibitor therapy for a metastastic neuroendocrine tumour in a patient with a germline TSC2 mutation. Annals of Oncology, 2017, 28, 904-905.                                          | 1.2 | 8         |
| 15 | Increased ERCC1 expression is linked to chromosomal aberrations and adverse tumor biology in prostate cancer. BMC Cancer, 2017, 17, 504.                                                              | 2.6 | 9         |
| 16 | Targeted nanoparticles for tumour radiotherapy enhancement—the long dawn of a golden era?.<br>Annals of Translational Medicine, 2016, 4, 523-523.                                                     | 1.7 | 12        |
| 17 | <scp>DNA</scp> damage foci: Meaning and significance. Environmental and Molecular Mutagenesis, 2015, 56, 491-504.                                                                                     | 2.2 | 254       |
| 18 | BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Letters, 2015, 356, 454-461.                          | 7.2 | 39        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Radioprotection of targeted and bystander cells by methylproamine. Strahlentherapie Und Onkologie, 2015, 191, 248-255.                                                                                                     | 2.0  | 15        |
| 20 | FGFR1 Amplification Is Often Homogeneous and Strongly Linked to the Squamous Cell Carcinoma Subtype in Esophageal Carcinoma. PLoS ONE, 2015, 10, e0141867.                                                                 | 2.5  | 16        |
| 21 | Ionizing Radiation-Induced DNA Strand Breaks and γ-H2AX Foci in Cells Exposed to Nitric Oxide. Methods<br>in Molecular Biology, 2011, 704, 17-25.                                                                          | 0.9  | 3         |
| 22 | Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Research, 2010, 38, 477-487.                                                                     | 14.5 | 79        |
| 23 | New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. European Journal of Pharmacology, 2009, 625, 151-155.                                                          | 3.5  | 51        |
| 24 | DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields.<br>Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 672, 82-89.                                 | 1.7  | 23        |
| 25 | The DNA Damage Response in Nontargeted Cells. , 2009, , 193-198.                                                                                                                                                           |      | 0         |
| 26 | Oral Polio vaccination leads to oligoclonal expansion of TCRBV16+ and TCRBV13+ T cells in the colon of rhesus macaques. Experimental and Molecular Pathology, 2008, 85, 189-195.                                           | 2.1  | 3         |
| 27 | ATM Acts Downstream of ATR in the DNA Damage Response Signaling of Bystander Cells. Cancer Research, 2008, 68, 7059-7065.                                                                                                  | 0.9  | 116       |
| 28 | ATR-dependent bystander effects in nontargeted cells. International Journal of Low Radiation, 2008, 5, 22.                                                                                                                 | 0.1  | 2         |
| 29 | Cytoplasmic Irradiation Induces Mitochondrial-Dependent 53BP1 Protein Relocalization in Irradiated and Bystander Cells. Cancer Research, 2007, 67, 5872-5879.                                                              | 0.9  | 160       |
| 30 | New insights on radiation-induced bystander signalling and its relationship to DNA repair.<br>International Congress Series, 2007, 1299, 121-127.                                                                          | 0.2  | 4         |
| 31 | ATR-dependent radiation-induced γH2AX foci in bystander primary human astrocytes and glioma cells.<br>Oncogene, 2007, 26, 993-1002.                                                                                        | 5.9  | 179       |
| 32 | Radiosensitivity of Tumor Cell Lines after Pretreatment with the EGFR Tyrosine Kinase Inhibitor ZD1839<br>(Iressa®). Strahlentherapie Und Onkologie, 2005, 181, 197-204.                                                   | 2.0  | 32        |
| 33 | Irradiation Induces a Biphasic Expression of Pro-Inflammatory Cytokines in the Lung. Strahlentherapie<br>Und Onkologie, 2004, 180, 442-448.                                                                                | 2.0  | 86        |
| 34 | 484 Biological markers associated with sensitivity of tumour cells to the epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 and ionizing radiation. European Journal of Cancer, Supplement, 2003, 1, S147. | 2.2  | 0         |